News

Enhancement of anaerobic glycolysis – a role of PGC-1α4 in resistance exercise

Resistance exercise training (RET) is an effective countermeasure to sarcopenia, related frailty and metabolic disorders. Here, we show that an RET-induced increase in PGC-1α4 (an isoform of the transcriptional co-activator PGC-1α) expression not only promotes muscle hypertrophy but also enhances glycolysis, providing a rapid supply of ATP for muscle contractions. In human skeletal muscle, PGC-1α4 binds to the nuclear receptor PPARβ following RET, resulting in downstream effects ...

Read More

The myokine Fibcd1 is an endogenous determinant of myofiber size and mitigates cancer-induced myofiber atrophy

Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse ...

Read More

Strength training alters the tissue fatty acids profile and slightly improves the thermogenic pathway in the adipose tissue of obese mice

Obesity is a disease characterized by the exacerbated increase of adipose tissue. A possible way to decrease the harmful effects of excessive adipose tissue is to increase the thermogenesis process, to the greater energy expenditure generated by the increase in heat in the body. In adipose tissue, the thermogenesis process is the result of an increase in mitochondrial work, having as substrate H+ ions, and which is related to the increased activity of UCP1. Evidence shows that stress is responsible ...

Read More

Ketone body and FGF21 coordinately regulate fasting-induced oxidative stress response in the heart

Ketone body β-hydroxybutyrate (βOHB) and fibroblast growth factor-21 (FGF21) have been proposed to mediate systemic metabolic response to fasting. However, it remains elusive about the signaling elicited by ketone and FGF21 in the heart. Stimulation of neonatal rat cardiomyocytes with βOHB and FGF21 induced peroxisome proliferator-activated receptor α (PPARα) and PGC1α expression along with the phosphorylation of LKB1 and AMPK. βOHB and FGF21 induced transcription ...

Read More

Many Ways to Rome: Exercise, Cold Exposure and Diet—Do They All Affect BAT Activation and WAT Browning in the Same Manner?

The discovery of functional brown adipose tissue (BAT) in adult humans and the possibility to recruit beige cells with high thermogenic potential within white adipose tissue (WAT) depots opened the field for new strategies to combat obesity and its associated comorbidities. Exercise training as well as cold exposure and dietary components are associated with the enhanced accumulation of metabolically-active beige adipocytes and BAT activation. Both activated beige and brown adipocytes increase their ...

Read More

Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men

Preclinical studies have revealed that the elevation of nicotinamide adenine dinucleotide (NAD + ) upon the administration of nicotinamide mononucleotide (NMN), an NAD + precursor, can mitigate aging-related disorders; however, human data on this are limited. We investigated whether the chronic oral supplementation of NMN can elevate blood NAD + levels and alter physiological dysfunctions in healthy older participants. We administered 250 mg NMN per ...

Read More

Alterations in intestinal microbiota in ultramarathon runners

To date, only one study has reported changes in the gut microbiome of an ultramarathon runner before and after competing in the race. Herein we aimed to investigate changes in intestinal microbiota in nine ultramarathon runners. Eight of the nine participants ran 96.102 km (up 8062 m, down 6983 km) and one ran 99.12 km (up 8448 m, down 7369 m) within 38–44 h. Intestinal microbiota alterations were examined at three timepoints: before (Pre), after (Post), and 10 days after (Recovery) the race. ...

Read More

The relationship of muscular endurance and coordination and dexterity with behavioral and neuroelectric indices of attention in preschool children

This study investigated the associations of non-aerobic fitness (NAF) and motor competence (MC) with attention in 4–6 year-old preschoolers. The allocation of attentional resources and speed of stimulus categorization were examined using the amplitude and latency of P3 of event-related potentials respectively, while cortical activation related to general attention and task-specific discriminative processes were examined using event-related desynchronization (ERD) at lower (8–10 Hz) and ...

Read More

Evaluation of skeletal muscle activity during foot training exercises using positron emission tomography

The foot exercises “rock-paper-scissors” and “towel gathering” are widely used in patients with lower limb disorders; however, there are no detailed reports on muscle activity during such training. We quantitatively evaluated the difference in skeletal muscle activity between the two exercises using positron emission tomography. Eight university student athletes were included. Four participants each were assigned to the foot rock-paper-scissors and towel gathering groups. ...

Read More

Combined Effects of High-Intensity Aerobic Exercise Training and Ziziphus jujuba Extract on Tissue Nesfatin-1 in Rats

Nesfatin-1 is involved in metabolic/feeding regulation and prevention of cardiovascular disease. Previous studies have shown that exercise and herb supplementation can influence nesfatin-1 concentration. The present study investigated the effects of high-intensity training (HIT) and Ziziphus jujuba (ZJ) extract on tissue nesfatin-1 in rats. Twenty-eight female rats were randomly assigned to one of four groups i.e. 1) Saline-Control (SC), 2) Saline-High Intensity Training (ST), 3) Ziziphus jujuba-Control ...

Read More

Effects of Functional Phenolics Dietary Supplementation on Athletes’ Performance and Recovery: A Review

In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems ...

Read More

Identification of Potential Muscle Biomarkers in McArdle Disease: Insights from Muscle Proteome Analysis

Glycogen storage disease type V (GSDV, McArdle disease) is a rare genetic myopathy caused by deficiency of the muscle isoform of glycogen phosphorylase (PYGM). This results in a block in the use of muscle glycogen as an energetic substrate, with subsequent exercise intolerance. The pathobiology of GSDV is still not fully understood, especially with regard to some features such as persistent muscle damage (i.e., even without prior exercise). We aimed at identifying potential muscle protein biomarkers ...

Read More

Linoleic Acid Attenuates Denervation-Induced Skeletal Muscle Atrophy in Mice through Regulation of Reactive Oxygen Species-Dependent Signaling

Muscle atrophy is a major muscle disease, the symptoms of which include decreased muscle volume leading to insufficient muscular support during exercise. One cause of muscle atrophy is the induction of oxidative stress by reactive oxygen species (ROS). This study aimed to identify the antioxidant mechanism of linoleic acid (LA) in muscle atrophy caused by oxidative stress. H2O2 has been used to induce oxidative stress in myoblasts in vitro. C2C12 myoblasts treated with H2O2 exhibited decreased viability ...

Read More

Effects of Low-Intensity and Long-Term Aerobic Exercise on the Psoas Muscle of mdx Mice: An Experimental Model of Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a muscle disease characterized by the absence of the protein dystrophin, which causes a loss of sarcolemma integrity, determining recurrent muscle injuries, decrease in muscle function, and progressive degeneration. Currently, there is a need for therapeutic treatments to improve the quality of life of DMD patients. Here, we investigated the effects of a low-intensity aerobic training (37 sessions) on satellite cells, peroxisome proliferator-activated receptor-gamma ...

Read More

Structural Analysis of Mitochondrial Dynamics—From Cardiomyocytes to Osteoblasts: A Critical Review

Mitochondria play a crucial role in cell physiology and pathophysiology. In this context, mitochondrial dynamics and, subsequently, mitochondrial ultrastructure have increasingly become hot topics in modern research, with a focus on mitochondrial fission and fusion. Thus, the dynamics of mitochondria in several diseases have been intensively investigated, especially with a view to developing new promising treatment options. However, the majority of recent studies are performed in highly energy-dependent ...

Read More

Harnessing the Power of Leptin: The Biochemical Link Connecting Obesity, Diabetes, and Cognitive Decline

In this review, the current understanding of leptin’s role in energy balance, glycemic regulation, and cognitive function is examined, and its involvement in maintaining the homeostatic “harmony” of these physiologies is explored. The effects of exercise on circulating leptin levels are summarized, and the results of clinical application of leptin to metabolic disease and neurologic dysfunction are reviewed. Finally, pre-clinical evidence is presented which suggests that synthetic ...

Read More

Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity

Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are ...

Read More

Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance

The skeletal muscle is the largest organ in the body and secretes circulating factors, including myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differentiation, fiber-type switching, and maintaining muscle mass. Myokines have profound effects on energy metabolism ...

Read More

Initial Muscle Quality Affects Individual Responsiveness of Interleukin-6 and Creatine Kinase following Acute Eccentric Exercise in Sedentary Obese Older Women

This study aimed to evaluate the time course and responsiveness of plasma interleukin-6 (IL-6) and creatine kinase (CK) levels following acute eccentric resistance exercise in sedentary obese older women with a different muscle quality index (MQI). Eighty-eight participants (69.4 ± 6.06 years) completed an acute eccentric resistance exercise (7 sets of 10 repetitions at 110% of 10-repetition maximum with 3 min rest interval). Participants were divided into two groups: high or low MQI according ...

Read More

The Effects of Irisin Hormone and the FNDC5 Gene on Brain Functions and Exercise: A Systematic Review

Introduction: The aim of this systematic review was to regroup all systematic reviews, non-systematic reviews and all original articles between 2017 and 2021 (including June) into one convenient publication that would facilitate the theoretical and applied scientific investigations directed on the efficacy of exercise and brain function on irisin hormone and FNDC5 gene. Evidence Acquisition: The systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis ...

Read More

Integrin αV Mediates the Effects of Irisin on Human Mature Adipocytes

Introdution and Aims: The myokine irisin is critical to modulating adipocytes thermogenesis and influence whole-body metabolism. However, whether there is difference in the effects of irisin on adipocytes derived from different depots remains unknown, and the receptor of irisin on adipocytes is still unclear. In this study, we determine the browning effect of irisin on adipocytes of subcutaneous and visceral human adipose tissue and explore the possibility that integrin αV was the receptor ...

Read More

Acute/Chronic Responses of Combined Training on Serum Pro-thermogenic/Anti-inflammatory Inducers and Its Relation With Fed and Fasting State in Overweight Type 2 Diabetic Individuals

Concentrations of pro-thermogenic/anti-inflammatory inductors are influenced by fed/fasting, sedentary/trained states, and metabolic pattern. However, there is a lack of information on the interactions of these conditions, especially in humans. Thus, the present study aimed to evaluate the chronic and acute training responses as well as the fed/fasted states of serum pro-thermogenic/anti-inflammatory inducers in overweight type 2 diabetics individuals. Fifteen individuals with type 2 diabetes [body ...

Read More

Biological Response of Irisin Induced by Different Types of Exercise in Obese Subjects: A Non-Inferiority Controlled Randomized Study

Background: Weight loss through physical exercise is warranted among obese individuals. Recently, a greater benefit in cardiorespiratory fitness was achievable with high-intensity interval training (HIIT) as compared with moderate intensity continuous training. The beneficial effect of training on CV health might be related to a specific modulation of circulating irisin, an adypo-myokine implicated in the regulation of energy expenditure. Methods: The present study investigates the circulating plasma ...

Read More

Salutary effects of moderate but not high intensity aerobic exercise training on the frequency of peripheral T-cells associated with immunosenescence in older women at high risk of breast cancer: a randomized controlled trial

Background: Immunosenescence is described as age-associated changes within the immune system that are responsible for decreased immunity and increased cancer risk. Physically active individuals have fewer ‘senescent’ and more naïve T-cells compared to their sedentary counterparts, but it is not known if exercise training can rejuvenate ‘older looking’ T-cell profiles. We determined the effects of 12-weeks supervised exercise training on the frequency of T-cell subtypes ...

Read More

AMP-activated protein kinase activation in skeletal muscle modulates exercise-induced uncoupled protein 1 expression in brown adipocyte in mouse model

Aerobic exercise is an effective intervention in preventing obesity and is also an important factor associated with thermogenesis. There is an increasing interest in the factors and mechanisms induced by aerobic exercise that can influence the metabolism and thermogenic activity in an individual. Recent studies suggest that exercise induced circulating factors (known as ‘exerkines’), which are able to modulate activation of brown adipose tissue (BAT) and browning of white adipose tissue. ...

Read More

Nobiletin enhances plasma Interleukin-6 and C-X-C motif chemokine ligand 1 levels that are increased by treadmill running

Exercise increases the muscular secretion of Interleukin-6 (IL-6), which is partially regulated by β2-adrenergic receptor signaling. Nobiletin is a polymethoxyflavone (PMF) found in citrus fruits that induces the secretion of IL-6 from C2C12 myotubes, but it remains unclear whether nobiletin promotes IL-6 secretion during exercise. The aim of this study was to clarify the effects of nobiletin on IL-6 secretion during exercise. Nobiletin and epinephrine were found to synergistically increase ...

Read More

Comprehensive Transcriptome Profiling of NAFLD- and NASH-Induced Skeletal Muscle Dysfunction

Nonalcoholic fatty liver disease (NAFLD), characterized by extensive triglyceride accumulation in hepatocytes, may progress to nonalcoholic steatohepatitis (NASH) with liver fibrosis and inflammation and increase the risk of cirrhosis, cancer, and death. It has been reported that physical exercise is effective in ameliorating NAFLD and NASH, while skeletal muscle dysfunctions, including lipid deposition and weakness, are accompanied with NAFLD and NASH. However, the molecular characteristics and ...

Read More

The effects of whole-body vibration amplitude on glucose metabolism, inflammation, and skeletal muscle oxygenation

Whole-body vibration (WBV) is an exercise mimetic that elicits beneficial metabolic effects. This study aims to investigate the effects of WBV amplitude on metabolic, inflammatory, and muscle oxygenation responses. Forty women and men were assigned to a high (HI; n = 20, Age: 31 ± 6 y) or a low-amplitude group (LO; n = 20, Age: 33 ± 6 y). Participants engaged in 10 cycles of WBV [1 cycle =1 min of vibration followed by 30 s of rest], while gastrocnemius muscle oxygen consumption (mVO2) ...

Read More

Too hard to die: Exercise training mediates specific and immediate SARS-CoV-2 protection

Several mechanisms may explain how exercise training mechanistically confers protection against coronavirus disease 2019 (COVID-19). Here we propose two new perspectives through which cardiorespiratory fitness may protect against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Physical exercise-activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling induces endothelial nitric oxide (NO) synthase (eNOS), increases NO bio-availability, and inhibits palmitoylation, ...

Read More

Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy

Skeletal muscle mass is regulated through coordinated activation of multiple signaling pathways. TAK1 signalosome has been found to be activated in various conditions of muscle atrophy and hypertrophy. However, the role and mechanisms by which TAK1 regulates skeletal muscle mass remain less understood. Here, we demonstrate that supraphysiological activation of TAK1 in skeletal muscle of adult mice stimulates translational machinery, protein synthesis, and myofiber growth. TAK1 causes phosphorylation ...

Read More

Inhibition of CXXC5 function reverses obesity-related metabolic diseases

Background: Metabolic diseases, including type 2 diabetes, have long been considered incurable, chronic conditions resulting from a variety of pathological conditions in obese patients. Growing evidence suggests the Wnt/β-catenin pathway is a major pathway in adipose tissue remodelling, pancreatic β-cell regeneration and energy expenditure through regulation of key metabolic target genes in various tissues. CXXC5-type zinc finger protein 5 (CXXC5) is identified negative feedback regulator ...

Read More

Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle

Preserving skeletal muscle function is essential to maintain life quality at high age. Calorie restriction (CR) potently extends health and lifespan, but is largely unachievable in humans, making “CR mimetics” of great interest. CR targets nutrient-sensing pathways centering on mTORC1. The mTORC1 inhibitor, rapamycin, is considered a potential CR mimetic and is proven to counteract age-related muscle loss. Therefore, we tested whether rapamycin acts via similar mechanisms as CR to slow ...

Read More

Relationship between different serum cartilage biomarkers in the acute response to running and jumping in healthy male individuals

The effect of physical activity on serum cartilage biomarkers is largely unknown. The purpose of the study was to systematically analyze the acute effect of two frequently used exercise interventions (running and jumping) on the correlation of seven serum biomarkers that reflect cartilage extracellular matrix metabolism. Fifteen healthy male volunteers (26 ± 4 years, 181 ± 4 cm, 77 ± 6 kg) participated in the repeated measurement study. ...

Read More

IL-37 isoform D acts as an inhibitor of soluble ST2 to boost type 2 immune homeostasis in white adipose tissue

White adipose tissue (WAT) homeostasis substantiated by type 2 immunity is indispensable to counteract obesity and metabolic disorders. IL-33/suppression of tumorigenicity (ST) 2 signaling promotes type 2 response in WAT, while potential regulators remain to be discovered. We identified human IL-37 isoform D (IL-37D) as an effective trigger for ST2-mediated type 2 immune homeostasis in WAT. IL-37D transgene amplified ST2+ immune cells, promoted M2 macrophage polarization and type 2 cytokine secretion ...

Read More

Cell Senescence and Central Regulators of Immune Response

Pathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic–pituitary–adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. ...

Read More

Effects of exercise on NAFLD using non-targeted metabolomics in adipose tissue, plasma, urine, and stool

The mechanisms by which exercise benefits patients with non-alcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, remain poorly understood. A non-targeted liquid chromatography-mass spectrometry (LC–MS)-based metabolomics analysis was used to identify metabolic changes associated with NAFLD in humans upon exercise intervention (without diet change) across four different sample types—adipose tissue (AT), plasma, urine, and stool. Altogether, 46 subjects with NAFLD ...

Read More

Preventive aerobic training preserves sympathovagal function and improves DNA repair capacity of peripheral blood mononuclear cells in rats with cardiomyopathy

To evaluate the effect of preventive aerobic exercise training on sympathovagal function, cardiac function, and DNA repair capacity in a preclinical model of doxorubicin (DOX)-induced cardiomyopathy. Forty male Wistar-Kyoto rats were allocated into four groups (n = 10/group): D (DOX-treated) and C (controls) remained sedentary, and DT (DOX-trained) and CT (control-trained) performed aerobic training 4 days/week, during 4 weeks before exposure to DOX (4 mg/kg/week during 4 weeks) or ...

Read More

Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice

Calorie restriction (CR) and fasting are common approaches to weight reduction, but the maintenance is difficult after resuming food consumption. Meanwhile, the gut microbiome associated with energy harvest alters dramatically in response to nutrient deprivation. Here, we reported that CR and high-fat diet (HFD) both remodeled the gut microbiota with similar microbial composition, Parabacteroides distasonis was most significantly decreased after CR or HFD. CR altered microbiota and reprogramed metabolism, ...

Read More

Antioxidant, Anti-Obesity, Nutritional and Other Beneficial Effects of Different Chili Pepper: A Review

Fruits and vegetables are important components of a healthy diet. They are rich sources of vitamins and minerals, dietary fibre and a host of beneficial non-nutrient substances including plant sterols, flavonoids and other antioxidants. It has been reported that reduced intake of fruits and vegetables may increase the risk of non-communicable diseases (NCDs). Chili pepper, is a common and important spice used to enhance taste and nutrition. Over the years, reports have shown its potential as antioxidant ...

Read More

Anti-Obesity and Anti-Hyperglycemic Effects of Meretrix lusoria Protamex Hydrolysate in ob/ob Mice

Meretrix lusoria (M. lusoria) is an economically important shellfish which is widely distributed in South Eastern Asia that contains bioactive peptides, proteins, and enzymes. In the present study, the extracted meat content of M. lusoria was enzymatic hydrolyzed using four different commercial proteases (neutrase, protamex, alcalase, and flavourzyme). Among the enzymatic hydrolysates, M. lusoria protamex hydrolysate (MLPH) fraction with MW ≤ 1 kDa exhibited the highest free radical scavenging ...

Read More

Phenotypic differences between people varying in muscularity

Background: Body mass is the primary metabolic compartment related to a vast number of clinical indices and predictions. The extent to which skeletal muscle (SM), a major body mass component, varies between people of the same sex, weight, height, and age is largely unknown. The current study aimed to explore the magnitude of muscularity variation present in adults and to examine if variation in muscularity associates with other body composition and metabolic measures. Methods: Muscularity was defined ...

Read More

Effects of reduced sedentary time on cardiometabolic health in adults with metabolic syndrome: A three-month randomized controlled trial

Objectives: The aim was to investigate if reducing sedentary behavior (SB) improves cardiometabolic biomarkers in adults with metabolic syndrome (MetS). Design: Randomized controlled trial. Methods: Sixty-four sedentary middle-aged adults with MetS were randomized into intervention (INT; n = 33) and control (CON; n = 31) groups. INT was guided to limit SB by 1 h/day through increased standing and light-intensity physical activity (LPA). CON was instructed to maintain usual habits. SB, ...

Read More

Collaborative, Dyadic, and Individual Planning and Physical Activity: A Dyadic Randomized Controlled Trial

Objective: This study was designed to investigate the effects of collaborative, dyadic, and individual planning on moderate-to-vigorous physical activity (MVPA) in target person–partner dyads. Individual planning reflects an “I-for-me” planning of one person’s behavior. Collaborative planning refers to joint planning of both dyad members’ behavior (“We-for-us” planning), and dyadic planning refers to joint planning of only the target person’s behavior ...

Read More

S-adenosyl-L-homocysteine extends lifespan through methionine restriction effects

Methionine restriction (MetR) can extend lifespan and delay the onset of aging-associated pathologies in most model organisms. Previously, we showed that supplementation with the metabolite S-adenosyl-L-homocysteine (SAH) extends lifespan and activates the energy sensor AMP-activated protein kinase (AMPK) in the budding yeast Saccharomyces cerevisiae. However, the mechanism involved and whether SAH can extend metazoan lifespan have remained unknown. Here, we show that SAH supplementation reduces ...

Read More

The ergogenic effect of acute carnosine and anserine supplementation: dosing, timing, and underlying mechanism

Background: Recent studies suggest that acute-combined carnosine and anserine supplementation has the potential to improve the performance of certain cycling protocols. Yet, data on optimal dose, timing of ingestion, effective exercise range, and mode of action are lacking. Three studies were conducted to establish dosing and timing guidelines concerning carnosine and anserine intake and to unravel the mechanism underlying the ergogenic effects. Methods: First, a dose response study A was conducted ...

Read More

Pre-sleep protein supplementation after an acute bout of evening resistance exercise does not improve next day performance or recovery in resistance trained men

Background: To evaluate the effect of pre-sleep protein supplementation after an acute bout of evening resistance training on next day performance and recovery the following day in physically active men. Methods: Eighteen resistance trained men performed a single bout of resistance exercise then received either a pre-sleep protein (PRO) supplement containing 40 g of casein protein (PRO; n = 10; mean ± SD; age = 24 ± 4 yrs; height = 1.81 ± 0.08 m; weight = 84.9 ± 9.5 kg) ...

Read More

Effects of short-term betaine supplementation on muscle endurance and indices of endocrine function following acute high-intensity resistance exercise in young athletes

Objective: This study examined the effects of short-term betaine supplementation on muscle endurance, plasma lactate, testosterone and cortisol levels, and the testosterone to cortisol (T/C) ratio in response to acute resistance exercise (RE). Methods: Using a double-blind, crossover study design, 10 handball players (age ± SD = 16 ± 1 yrs) without prior-structured RE experience performed a high-intensity RE session (leg press followed by bench press; 5 sets to volitional fatigue using ...

Read More

Role of Obesity, Physical Exercise, Adipose Tissue-Skeletal Muscle Crosstalk and Molecular Advances in Barrett’s Esophagus and Esophageal Adenocarcinoma

Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as a less reflux-dependent effect, ...

Read More

Exercised accelerated the production of muscle-derived kynurenic acid in skeletal muscle and alleviated the postmenopausal osteoporosis through the Gpr35/NFκB p65 pathway

Background: Reduced serum estrogen levels in postmenopausal patients not only aggravate bone loss but also impact myokine secretion. Emerging evidence has revealed the importance of myokines in bone metabolism, and exercise can interfere with the secretion of myokines. However, few studies have explored the impact of exercise on myokine secretion in the postmenopausal osteoporosis (PMOP) process. Methods: Ten-weeks-old C57B/L6 female mice were used for constructing the postmenopausal osteoporosis ...

Read More

Physical Exercise Restrains Cancer Progression through Muscle-Derived Factors

A growing body of in vitro and in vivo studies suggests that physical activity offers important benefits against cancer, in terms of both prevention and treatment. However, the exact mechanisms implicated in the anticancer effects of exercise remain to be further elucidated. Muscle-secreted factors in response to contraction have been proposed to mediate the physical exercise-induced beneficial effects and be responsible for the inter-tissue communications. Specifically, myokines and microRNAs (miRNAs) ...

Read More

Apelin Resistance Contributes to Muscle Loss during Cancer Cachexia in Mice

Cancer cachexia consists of dramatic body weight loss with rapid muscle depletion due to imbalanced protein homeostasis. We found that the mRNA levels of apelin decrease in muscles from cachectic hepatoma-bearing rats and three mouse models of cachexia. Furthermore, apelin expression inversely correlates with MuRF1 in muscle biopsies from cancer patients. To shed light on the possible role of apelin in cachexia in vivo, we generated apelin 13 carrying all the last 13 amino acids of apelin in D isomers, ...

Read More

Modulating Tumour Hypoxia in Prostate Cancer Through Exercise: The Impact of Redox Signalling on Radiosensitivity

Prostate cancer is a complex disease affecting millions of men globally. Radiotherapy (RT) is a common treatment modality although treatment efficacy is dependent upon several features within the tumour microenvironment (TME), especially hypoxia. A hypoxic TME heightens radioresistance and thus disease recurrence and treatment failure continues to pose important challenges. However, the TME evolves under the influence of factors in systemic circulation and cellular crosstalk, underscoring its potential ...

Read More

Gestational Exercise Increases Male Offspring’s Maximal Workload Capacity Early in Life

Mothers’ antenatal strategies to improve the intrauterine environment can positively decrease pregnancy-derived intercurrences. By challenging the mother–fetus unit, gestational exercise (GE) favorably modulates deleterious stimuli, such as high-fat, high-sucrose (HFHS) diet-induced adverse consequences for offspring. We aimed to analyze whether GE alters maternal HFHS-consumption effects on male offspring’s maximal workload performance (MWP) and in some skeletal muscle (the soleus—SOL ...

Read More

Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs

Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional ...

Read More

Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice

Background: Neuroinflammation is a crucial factor in the development of secondary brain injury after intracerebral hemorrhage (ICH). Irisin is a newly identified myokine that confers strong neuroprotective effects in experimental ischemic stroke. However, whether this myokine can exert neuroprotection effects after ICH remains unknown. This study aimed to investigate the impact of irisin treatment on neuroinflammation and neuronal apoptosis and the underlying mechanism involving integrin αVβ5/AMPK ...

Read More

Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia

The aim of this study was to explore the use of coenzyme Q10 and skeletal muscle protein biomarkers in the diagnosis of sarcopenia. Subjects with or without sarcopenia were recruited. The anthropometric, muscle strength and endurance measurements were assessed. Muscle proteins (albumin and creatine kinase), myokines (irisin and myostatin), and the coenzyme Q10 level were measured. Approximately half of the subjects suffered from a low coenzyme Q10 concentration (<0.5 μM). The levels of creatinine ...

Read More

Ischemia during rest intervals between sets prevents decreases in fatigue during the explosive squat exercise: a randomized, crossover study

The study aimed to evaluate the impact of ischemia, used only before particular sets of a lower limb resistance exercise on power output. Ten healthy resistance-trained males (age = 26 ± 6 years; body mass = 90 ± 9 kg; training experience = 9 ± 7 years) performed two experimental sessions (with ischemia; control without ischemia) following a randomized crossover design. During the ischemic condition, ...

Read More

EBI2 is a negative modulator of brown adipose tissue energy expenditure in mice and human brown adipocytes

Pharmacological activation of brown adipose tissue (BAT) is an attractive approach for increasing energy expenditure to counteract obesity. Given the side-effects of known activators of BAT, we studied inhibitors of BAT as a novel, alternative concept to regulate energy expenditure. We focused on G-protein-coupled receptors that are one of the major targets of clinically used drugs. Here, we identify GPR183, also known as EBI2, as the most highly expressed inhibitory G-protein-coupled receptor in ...

Read More

Inflammatory cytokines and sarcopenia in Iranian adults-results from SARIR study

Some studies suggested the effects of inflammatory cytokines in reducing muscle mass and muscle strength and, performance. This study aimed to compare pro-inflammatory cytokines in sarcopenic and non-sarcopenic subjects. 120 men and women were selected out from the cross-sectional study ‘sarcopenia and its determinants among Iranian elders’ (SARIR). Sarcopenia was defined based on the first ‘European Working Group on sarcopenia in older people’ (EWGSOP1) guidelines. A fasting ...

Read More

Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice

Obesity is the major driver of the global epidemic in type 2 diabetes (T2D). In individuals with obesity, impaired insulin action leads to increased lipolysis in adipocytes, resulting in elevated plasma free fatty acid (FFA) levels that promote peripheral insulin resistance, a hallmark of T2D. Here we show, by using a combined genetic/biochemical/pharmacologic approach, that increased adipocyte lipolysis can be prevented by selective activation of adipocyte Gq signaling in vitro and in vivo (in mice). ...

Read More

Hypothesized pathways for the association of vitamin D status and insulin sensitivity with resting energy expenditure: a cross sectional mediation analysis in Australian adults of European ancestry

Background: The role of vitamin D in human energy expenditure requires confirmation. We explored whether insulin sensitivity (IS)/insulin resistance (IR) mediated the association of vitamin D status (25OHD) on resting energy expenditure (REE). Methods: REE, body composition (by DEXA) and clinical biochemistry of 155 Australian men and women were collated. A hypothesized mediation pathway through IS/IR on the direct association between 25OHD and REE was modeled, using three surrogate indices of IS/IR: ...

Read More

The association between diabetes and hypertension with the number and extent of weight cycles determined from 6 million participants

The purpose of this study was to elucidate the association between weight cycling and clinical outcomes such as type 2 diabetes and hypertension with differential effects of baseline age and obesity. Nationwide data from 6,132,569 healthy adults who underwent five or more health screenings between 2002 and 2011 were analyzed and followed until December 2019 for type 2 diabetes and hypertension. Weight cycling was defined as a change in body weight followed by another change in the opposite direction. ...

Read More

Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease

Irisin protects the cardiovascular system against vascular diseases. However, its role in chronic kidney disease (CKD) -associated vascular calcification (VC) and the underlying mechanisms remain unclear. In the present study, we investigated the potential link among Irisin, pyroptosis, and VC under CKD conditions. During mouse vascular smooth muscle cell (VSMC) calcification induced by β-glycerophosphate (β-GP), the pyroptosis level was increased, as evidenced by the upregulated expression ...

Read More

Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle

The endoplasmic reticulum (ER) regulates cellular protein and lipid biosynthesis. ER dysfunction leads to protein misfolding and the unfolded protein response (UPR), which limits protein synthesis to prevent cytotoxicity. Chronic ER stress in skeletal muscle is a unifying mechanism linking lipotoxicity to metabolic disease. Unidentified signals from cells undergoing ER stress propagate paracrine and systemic UPR activation. Here, we induce ER stress and lipotoxicity in myotubes. We observe ER stress-inducing ...

Read More

Exercise suppresses tumor growth independent of high fat food intake and associated immune dysfunction

Epidemiological data suggest that exercise training protects from cancer independent of BMI. Here, we aimed to elucidate mechanisms involved in voluntary wheel running-dependent control of tumor growth across chow and high-fat diets. Access to running wheels decreased tumor growth in B16F10 tumor-bearing on chow (− 50%) or high-fat diets (− 75%, p < 0.001), however, tumor growth was augmented in high-fat fed mice (+ 53%, p < 0.001). Tumor growth ...

Read More

Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA

The role of aerobic exercise in preventing and improving non-alcoholic fatty liver has been widely established. SRA is a long non-coding RNA, which has received increasing attention due to its important role in lipid metabolism. However, it is unclear whether aerobic exercise can prevent and treat hepatic lipid accumulation via SRA. The mice were randomly divided into four groups as follows, normal control group, normal aerobic exercise group, high-fat diet group (HFD), and high-fat diet plus aerobic ...

Read More

Effect of different recovery modes during resistance training with blood flow restriction on hormonal levels and performance in young men: a randomized controlled trial

Background: Resistance training with blood flow restriction (BFR) results in hypertrophy, and its magnitude depends on various training variables. This study aimed to compare the long-term effect of passive recovery (PR) and active recovery (AR) during low-intensity resistance training with BFR on hormonal levels and performance in young men. Methods: In the randomized clinical trial, 20 men were randomly divided into PR and AR groups during resistance training with BFR. The intervention consisted ...

Read More

The roles of catechins in regulation of systemic inflammation

Catechins are a phytochemical present in plants such as tea leaves, beans, black grapes, cherries, and cacao, and have various physiological activities. It is reported that catechins have a health improvement effect and ameliorating effect against various diseases. In addition, antioxidant activity, liver damage prevention, cholesterol lowering effect, and anti-obesity activity were confirmed through in vivo animal and clinical studies. Although most diseases are reported as ones mediating various ...

Read More

The Effects of Carbohydrate versus Fat Restriction on Lipid Profiles in Highly Trained, Recreational Distance Runners: A Randomized, Cross-Over Trial

A growing number of endurance athletes have considered switching from a traditional high-carbohydrate/low-fat (HCLF) to a low-carbohydrate/high-fat (LCHF) eating pattern for health and performance reasons. However, few studies have examined how LCHF diets affect blood lipid profiles in highly-trained runners. In a randomized and counterbalanced, cross-over design, athletes (n = 7 men; VO2max: 61.9 ± 6.1 mL/kg/min) completed six weeks of two, ad libitum, LCHF (6/69/25% en carbohydrate/fat/protein) ...

Read More

Myokines and Resistance Training: A Narrative Review

In the last few years, the muscular system has gained attention due to the discovery of the muscle-secretome and its high potency for retaining or regaining health. These cytokines, described as myokines, released by the working muscle, are involved in anti-inflammatory, metabolic and immunological processes. These are able to influence human health in a positive way and are a target of research in metabolic diseases, cancer, neurological diseases, and other non-communicable diseases. Therefore, ...

Read More

Physiological Responses to Combat Sports in Metabolic Diseases: A Systematic Review

The aim of this systematic review was to investigate how individuals with metabolic diseases respond to combat sports and if they are feasible, safe, and applicable. A systematic literature search was conducted in PubMed, from inception until 22 January 2021. Studies were included if combat sport exercise sessions were clearly defined and participants had the following types of metabolic disease: type 1 or 2 diabetes mellitus, metabolic syndrome, overweight, and obesity. Eleven studies, involving ...

Read More

The Impact of Exercise on Telomere Length, DNA Methylation and Metabolic Footprints

Aging as a major risk factor influences the probability of developing cancer, cardiovascular disease and diabetes, amongst others. The underlying mechanisms of disease are still not fully understood, but research suggests that delaying the aging process could ameliorate these pathologies. A key biological process in aging is cellular senescence which is associated with several stressors such as telomere shortening or enhanced DNA methylation. Telomere length as well as DNA methylation levels can ...

Read More

Exerkines in health, resilience and disease

The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released ...

Read More

Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs

Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors ...

Read More

Crosstalk between CYP2E1 and PPARα substrates and agonists modulate adipose browning and obesity

Although the functions of metabolic enzymes and nuclear receptors in controlling physiological homeostasis have been established, their crosstalk in modulating metabolic disease has not been explored. Genetic ablation of the xenobiotic-metabolizing cytochrome P450 enzyme CYP2E1 in mice markedly induced adipose browning and increased energy expenditure to improve obesity. CYP2E1 deficiency activated the expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) target genes, ...

Read More

Obesity and exercise training alter inflammatory pathway skeletal muscle small extracellular vesicle miRNAs

Obesity is associated with chronic inflammation characterized by increased levels of inflammatory cytokines, while exercise training reduces inflammation. Small EVs (30-150 nm) participate in cell-to-cell communication in part through miRNA post-transcriptional regulation of mRNA. Purpose: The current study examined if obesity and concurrent exercise training alter skeletal muscle: (1) EV miRNA content and (2) inflammatory signaling. Methods: Vastus lateralis biopsies were obtained from sedentary ...

Read More

Effects of exercise intensity on white adipose tissue browning and its regulatory signals in mice

Adipose tissue has been classified into white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue the latter of which is produced as WAT changes into BAT due to exposure to cold temperature or exercise. In response to these stimulations, WAT produces heat by increasing mitochondrial contents and the expression of uncoupling protein 1 (UCP1), thus facilitating browning. Exercise is known to be one of the triggers for WAT browning, but the effects of exercise intensity on the ...

Read More

N1-Methylnicotinamide: Is It Time to Consider as a Dietary Supplement for Athletes?

Exercise is considered to be a "medicine" due to its modulatory roles in metabolic disorders such as diabetes and obesity. The intensity and duration of exercise determine the mechanism of energy production by various tissues of the body, especially by muscles, in which the requirement for adenosine triphosphate (ATP) increases by as much as 100-fold. Naturally, athletes try to improve their exercise performance by dietary supplementation with, e.g., vitamins, metabolites, and amino acids. MNAM, ...

Read More

Organokines and Exosomes: Integrators of Adipose Tissue Macrophage Polarization and Recruitment in Obesity

The prevalence of obesity is escalating and has become a worldwide health challenge coinciding with the development of metabolic diseases. Emerging evidence has shown that obesity is accompanied by the infiltration of macrophages into adipose tissue, contributing to a state of low-grade chronic inflammation and dysregulated metabolism. Moreover, in the state of obesity, the phenotype of adipose tissue macrophages switches from the M2 polarized state to the M1 state, thereby contributing to chronic ...

Read More

Obesity: A Chronic Low-Grade Inflammation and Its Markers

As the prevalence of obesity continues to rise, the world is facing a major public health concern. Obesity is a complex disease associated with an increase in several inflammatory markers, leading to chronic low-grade inflammation. Of multifactorial etiology, it is often used as a measurement of morbidity and mortality. There remains much unknown regarding the association between obesity and inflammation. This review seeks to compile scientific literature on obesity and its associated inflammatory ...

Read More

High-intensity interval training and moderate intensity training with exogenous adenosine counteract development of obesity in rats

Objectives: High-Intensity Interval Training (HIIT) and Moderate Intensity Training (MIT) can combat the obesity epidemic. However, studies comparing their effects on obesity show controversial findings regarding weight loss. Adenosine has emerged as a possible, novel therapeutic agent to treat obesity, but more preclinical studies on its efficacy are needed. Therefore, the objectives of this study were to compare the effects of HIIT and MIT on obesity, and further to determine the dose-dependent ...

Read More

PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake

An investigation of new ways to activate brown adipose tissue (BAT) is highly valuable, as it is a possible tool for obesity prevention and treatment. The aim of our study was to evaluate the relationships between dietary intake and BAT activity. The study group comprised 28 healthy non-smoking males aged 21–42 years. All volunteers underwent a physical examination and 75-g OGTT and completed 3-day food intake diaries to evaluate macronutrients and fatty acid intake. Body composition measurements ...

Read More

Patients with low muscle mass have characteristic microbiome with low potential for amino acid synthesis in chronic liver disease

Sarcopenia is thought to be related to the microbiome, but not enough reports in chronic liver disease (CLD) patients. In addition to the differences in microbiome, the role of the microbiome in the gut is also important to be clarified because it has recently been shown that the microbiome may produce branched-chain amino acids (BCAAs) in the body. In this single-center study, sixty-nine CLD patients were divided by skeletal muscle mass index (SMI) into low (L-SMI: n = 25) and normal ...

Read More

Effects of Cardiorespiratory Fitness on Cerebral Oxygenation in Healthy Adults: A Systematic Review

Introduction: Exercise is known to improve cognitive functioning and the cardiorespiratory hypothesis suggests that this is due to the relationship between cardiorespiratory fitness (CRF) level and cerebral oxygenation. The purpose of this systematic review is to consolidate findings from functional near-infrared spectroscopy (fNIRS) studies that examined the effect of CRF level on cerebral oxygenation during exercise and cognitive tasks. Methods: Medline, Embase, SPORTDiscus, and Web of Science ...

Read More

Why do humans undergo an adiposity rebound? Exploring links with the energetic costs of brain development in childhood using MRI-based 4D measures of total cerebral blood flow

Background: Individuals typically show a childhood nadir in adiposity termed the adiposity rebound (AR). The AR serves as an early predictor of obesity risk, with early rebounders often at increased risk; however, it is unclear why this phenomenon occurs, which could impede understandings of weight gain trajectories. The brain’s energy requirements account for a lifetime peak of 66% of the body’s resting metabolic expenditure during childhood, around the age of the AR, and relates inversely ...

Read More

Oral administration of processed Cassia obtusifolia L. seed powder May reduce body weight and cholesterol in overweight patients with schizophrenia: A 36-week randomized, double-blind, controlled trial of high and low doses

Obesity in patients with schizophrenia is related to antipsychotic drug use, hypertension, diabetes, and dyslipidemia, which are critical risk factors for cardiovascular disease. Cassia seed is a traditional Chinese medicine that can be used to treat various eye disorders. Anthraquinone-containing Cassia seed were used to lower serum levels of fat and cholesterol. Aim of study: The effects of Cassia seed powder on body weight and lipids were investigated in overweight or obese patients with schizophrenia. Methods: ...

Read More

Therapeutic routine with respiratory exercises improves posture, muscle activity, and respiratory pattern of patients with neck pain: a randomized controlled trial

Neck pain and forward head posture (FHP) are typical in prolonged smartphone users and need to be targeted for treatment. We aimed to compare the effect of a routine therapeutic program with and without respiratory exercises on smartphone users with FHP and non-specific chronic neck pain (NSCNP). Sixty patients (aged 24.7 ± 2.1 years) with FHP and NSCNP were randomly assigned to the routine therapeutic program (n = 20), combined respiratory exercises with a routine therapeutic ...

Read More

The outstanding beneficial roles of irisin disorders

Depression is a widely observed psychiatric disorder that affects a quite large number of people all around the world. A major depressive disorder (MDD) is a multifactorial disease that IS associated with fluctuations in appetite, body weight, and energy situations in addition to serious mood problems. The aim of this review is to investigate a possible link between energy regulatory hormones of irisin and depressive disorders. Irisin is a hormone that plays a significant role in the regulation of ...

Read More

Exercise for the Diabetic Gut—Potential Health Effects and Underlying Mechanisms

It can be assumed that changes in the gut microbiota play a crucial role in the development of type 2 diabetes mellitus (T2DM). It is generally accepted that regular physical activity is beneficial for the prevention and therapy of T2DM. Therefore, this review analyzes the effects of exercise training on the gut microbiota composition and the intestinal barrier function in T2DM. The current literature shows that regular exercise can influence the gut microbiota composition and the intestinal barrier ...

Read More

Brain Mechanisms of Exercise-Induced Hypoalgesia: To Find a Way Out from “Fear-Avoidance Belief”

It is well known that exercise produces analgesic effects (exercise-induced hypoalgesia (EIH)) in animal models and chronic pain patients, but the brain mechanisms underlying these EIH effects, especially concerning the emotional aspects of pain, are not yet fully understood. In this review, we describe drastic changes in the mesocorticolimbic system of the brain which permit the induction of EIH effects. The amygdala (Amyg) is a critical node for the regulation of emotions, such as fear and anxiety, ...

Read More

Interleukin 6 as an energy allocator in muscle tissue

Extensive research has shown that interleukin 6 (IL-6) is a multifunctional molecule that is both proinflammatory and anti-inflammatory, depending on the context. Here, we combine an evolutionary perspective with physiological data to propose that IL-6’s context-dependent effects on metabolism reflect its adaptive role for short-term energy allocation. This energy-allocation role is especially salient during physical activity, when skeletal muscle releases large amounts of IL-6. We predict ...

Read More

Myokine Expression and Tumor-Suppressive Effect of Serum after 12 wk of Exercise in Prostate Cancer Patients on ADT

Purpose: Although several mechanisms have been proposed for the tumor-suppressive effect of exercise, little attention has been given to myokines, even though skeletal muscle is heavily recruited during exercise resulting in myokine surges. We measured resting serum myokine levels before and after an exercise-based intervention and the effect of this serum on prostate cancer cell growth. Methods: Ten prostate cancer patients undertaking androgen deprivation therapy (age, 73.3 ± 5.6 yr) undertook ...

Read More

Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors

Sarcopenic obesity is defined as a multifactorial disease in aging with decreased body muscle, decreased muscle strength, decreased independence, increased fat mass, due to decreased physical activity, changes in adipokines and myokines, and decreased satellite cells. People with sarcopenic obesity cause harmful changes in myokines and adipokines. These changes are due to a decrease interleukin-10 (IL-10), interleukin-15 (IL-15), insulin-like growth factor hormone (IGF-1), irisin, leukemia inhibitory ...

Read More

Anabolic Factors and Myokines Improve Differentiation of Human Embryonic Stem Cell Derived Skeletal Muscle Cells

Skeletal muscle weakness is linked to many adverse health outcomes. Current research to identify new drugs has often been inconclusive due to lack of adequate cellular models. We previously developed a scalable monolayer system to differentiate human embryonic stem cells (hESCs) into mature skeletal muscle cells (SkMCs) within 26 days without cell sorting or genetic manipulation. Here, building on our previous work, we show that differentiation and fusion of myotubes can be further enhanced using ...

Read More

The effect of exercise interventions on Irisin level a systematic review and meta-analysis of randomized controlled trials

Irisin is a hormone that is offered to be a hopeful remedial target in obesity and type 2 diabetes. It has received striking attention recently, whereas, the interactions between exercise training and irisin are still unclear. Therefore, this systematic review and meta-analysis investigated the impacts of exercise interventions on circulating irisin in adults. A systematic search was conducted in PubMed, CINAHL, MEDLINE, Cochrane, Google Scholar, and Scopus up to July 15, 2021. Twenty-four studies, ...

Read More

FNDC5/Irisin: Physiology and Pathophysiology

A sedentary lifestyle or lack of physical activity increases the risk of different diseases, including obesity, diabetes, heart diseases, certain types of cancers, and some neurological diseases. Physical exercise helps improve quality of life and reduces the risk of many diseases. Irisin, a hormone induced by exercise, is a fragmented product of FNDC5 (a cell membrane protein) and acts as a linkage between muscles and other tissues. Over the past decade, it has become clear that irisin is a molecular ...

Read More

Adipose-tissue plasticity in health and disease

Adipose tissue, colloquially known as “fat,” is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue ...

Read More

Disuse-associated loss of the protease LONP1 in muscle impairs mitochondrial function and causes reduced skeletal muscle mass and strength

Mitochondrial proteolysis is an evolutionarily conseved quality-control mechanism to maintain proper mitochondrial integrity and function. However, the physiological relevance of stress-induced impaired mitochondrial protein quality remains unclear. Here, we demonstrate that LONP1, a major mitochondrial protease resides in the matrix, plays a role in controlling mitochondrial function as well as skeletal muscle mass and strength in response to muscle disuse. In humans and mice, disuse-related muscle ...

Read More

Exercise in advanced prostate cancer elevates myokine levels and suppresses in-vitro cell growth

Background: Altering the systemic milieu through exercise has been proposed as a potential mechanism underlying exercise-driven tumour suppression. It is not yet known whether men with advanced prostate cancer can elicit such adaptations following a program of exercise. The purpose is to examine myokine levels of serum acquired from metastatic castrate-resistant prostate cancer (mCRPC) patients recruited to the INTERVAL-GAP4 trial before and after 6 months of exercise and its tumour-suppressive effect. Methods: ...

Read More

Effect of Sleep Extension on Objectively Assessed Energy Intake Among Adults With Overweight in Real-life SettingsA Randomized Clinical Trial

Importance: Short sleep duration has been recognized as a risk factor for obesity. Whether extending sleep duration may mitigate this risk remains unknown. Objective: To determine the effects of a sleep extension intervention on objectively assessed energy intake, energy expenditure, and body weight in real-life settings among adults with overweight who habitually curtailed their sleep duration. Design, Setting, and Participants: This single-center, randomized clinical trial was conducted from ...

Read More

Muscle protein synthesis and muscle/metabolic responses to resistance exercise training in South Asian and White European men

The aims of the current study, therefore, were to compare (1) free-living MPS and (2) muscle and metabolic adaptations to resistance exercise in South Asian and white European adults. Eighteen South Asian and 16 White European men were enrolled in the study. Free-living muscle protein synthesis was measured at baseline. Muscle strength, body composition, resting metabolic rate, VO2max and metabolic responses (insulin sensitivity) to a mixed meal were measured at baseline and following 12 weeks of ...

Read More

Potential of micro-exercise to prevent long-term sickness absence in the general working population: prospective cohort study with register follow-up

This study assesses the potential of workplace-based micro-exercise (brief and simple exercise bouts) to prevent long-term sickness absence (LTSA) at the population level. In the Work Environment and Health in Denmark Study (2012–2018), we followed 70,130 workers from the general working population, without prior LTSA, for two years in the Danish Register for Evaluation of Marginalisation. We used Cox regression with model-assisted weights and controlled for various confounders. From 2012 to ...

Read More

The energy balance model of obesity: beyond calories in, calories out

A recent Perspective article described the “carbohydrate-insulin model (CIM)” of obesity, asserting that it “better reflects knowledge on the biology of weight control” as compared to what was described as the “dominant energy balance model (EBM)” that fails to consider “biological mechanisms that promote weight gain”. Unfortunately, the Perspective conflated and confused the principle of energy balance, a law of physics which is agnostic as to obesity ...

Read More

Home-based, supervised, and mixed exercise intervention on functional capacity and quality of life of colorectal cancer patients: a meta-analysis

This systematic review and meta-analysis of randomized controlled trials tested the effects of home-based, supervised, or mixed exercise interventions on the functional capacity (FC) and quality of life (QoL) in colorectal cancer patients. A literature search was performed using the PubMed, Embase, Cochrane, and Medline databases. Two reviewers screened the literature through March 10, 2021 for studies related to exercise and colorectal cancer. Of the 1161 screened studies in the initial search, ...

Read More

Myokines in Appetite Control and Energy Balance

Efficacy of obesity treatments varies between individuals, highlighting the presence of responders and non-responders. Whilst exercise alone or exercise combined with diet leads to underwhelming weight loss for most, there exist super responders losing significant weight. Furthermore, in response to weight loss, the majority but not all patients tend to regain weight. Within the biopsychosocial model, biology as a determinant of response has been underappreciated. The understanding of the role that ...

Read More

TAZ links exercise to mitochondrial biogenesis via mitochondrial transcription factor A

Mitochondria are energy-generating organelles and mitochondrial biogenesis is stimulated to meet energy requirements in response to extracellular stimuli, including exercise. However, the mechanisms underlying mitochondrial biogenesis remain unknown. Here, we demonstrate that transcriptional coactivator with PDZ-binding motif (TAZ) stimulates mitochondrial biogenesis in skeletal muscle. In muscle-specific TAZ-knockout (mKO) mice, mitochondrial biogenesis, respiratory metabolism, and exercise ability ...

Read More

Single bout of exercise triggers the increase of vitamin D blood concentration in adolescent trained boys: a pilot study

Vitamin D is necessary for musculoskeletal health, however, the supplementation of vitamin D above the sufficiency level does not bring additional bone mass density (BMD), unlike physical exercise which enhances the bone formatting process. Regular physical activity has been shown to upregulate VDR expression in muscles and to increase circulating vitamin D. Here we investigate whether a single bout of exercise might change 25(OH)D3 blood concentration and how it affects metabolic response to exercise. ...

Read More

Clusterin is involved in mediating the metabolic function of adipose SIRT1

SIRT1 is a metabolic sensor regulating energy homeostasis. The present study revealed that mice with selective overexpression of human SIRT1 in adipose tissue (Adipo-SIRT1) were protected from high-fat diet (HFD)-induced metabolic abnormalities. Adipose SIRT1 was enriched at mitochondria-ER contacts (MERCs) to trigger mitohormesis and unfolded protein response (UPRmt), in turn preventing ER stress. As a downstream target of UPRmt, clusterin was significantly upregulated and acted together with SIRT1 ...

Read More

Effects of short sprint interval training on aerobic and anaerobic indices: A systematic review and meta-analysis

The effects of short sprint interval training (sSIT) with efforts of ≤10 seconds on maximal oxygen consumption (V̇O2max), aerobic and anaerobic performances remain unknown. To verify the effectiveness of sSIT in physically active adults and athletes, a systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The databases PubMed/MEDLINE, ISI Web of Science, SPORTDiscus were systematically searched on the 9th of May ...

Read More

Estimated Number of Deaths Prevented Through Increased Physical Activity Among US Adults

Previous studies suggest that a substantial number of deaths could be prevented annually by increasing population levels of physical activity. However, previous estimates have relied on convenience samples, used self-reported physical activity data, and assumed relatively large increases in activity levels (eg, more than 30 minutes per day). The potential public health benefit of changing daily physical activity by a manageable amount is not yet known. In this study, we used accelerometer measurements ...

Read More

Renal failure suppresses muscle irisin expression, and irisin blunts cortical bone loss in mice

Background: Chronic renal failure induces bone mineral disorders and sarcopenia. Skeletal muscle affects other tissues, including bone, by releasing myokines. However, the effects of chronic renal failure on the interactions between muscle and bone remain unclear. Methods: We investigated the effects of renal failure on bone, muscle, and myokines linking muscle to bone using a mouse 5/6 nephrectomy (Nx) model. Muscle mass and bone mineral density (BMD) were analysed by quantitative computed tomography ...

Read More

Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines?

The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. ...

Read More

The high-intensity interval training introduced in physical education lessons decrease systole in high blood pressure adolescents

Increased resting blood pressure (BP) is a risk factor for many health complications. The prevalence of elevated BP is growing among adolescents. There is a need to investigate effective ways of decreasing excessive blood pressure in this age group. The study aim was to determine the effect of 10-weeks High-Intensive Interval Training (HIIT)—Tabata protocol—introduced in physical education (PE) lessons on resting blood pressure in adolescents. The sample included 52 boys aged 16.23 ± 0.33 ...

Read More

Moderate Treadmill Exercise Modulates Gut Microbiota and Improves Intestinal Barrier in High-Fat-Diet-Induced Obese Mice via the AMPK/CDX2 Signaling Pathway

Objective: The aim of this study was to investigate the effects of moderate treadmill exercise on gut microbiota, expression of proteins associated with gut barrier and to elucidate the mechanisms underlying their role in high-fat-diet-induced obese mice. Methods: Six-week-old male C57BL/6 mice were randomly divided into standard chow diet control group (SD + Sed, n=6), chow diet exercise group (SD + Exe, n=6), high-fat diet control group (HFD + Sed, n=6) and high-fat diet exercise group (HFD + ...

Read More

Acute effects of low-volume intermittent versus higher-volume continuous exercise on arterial stiffness in healthy young men

To compare the acute effects of low-volume intermittent and higher-volume continuous exercise on arterial stiffness, 20 healthy men (22.4 ± 0.4 years) were randomized to non-exercise control (CON), high-volume Continuous Exercise (CE), lower-volume Intermittent exercise of Long bouts with Long interval (ILL), of Long bouts with Short interval (ILS), and of Short bouts with Short interval trial (ISS). Exercise intensity was 35% heart rate reserve. Arterial stiffness in Cardio-ankle ...

Read More

Metabolite Signature of Physical Activity and the Risk of Type 2 Diabetes in 7271 Men

Large population-based studies investigating the association of physical activity (PA) with the metabolite signature contribute significantly to the understanding of the effects of PA on metabolic pathways associated with the risk of type2 diabetes. Our study included 8749 Finnish men without diabetes at baseline recruited from the Metabolic Syndrome in Men (METSIM) cohort. We used a questionnaire to measure leisure-time PA. Metabolites were measured in 7271 men as a part of Metabolon’s untargeted ...

Read More

The role of the androgen receptor in the pathogenesis of obesity and its utility as a target for obesity treatments

Obesity is associated with hypothalamic–pituitary–testicular axis dysregulation in males. Here, we summarize recent evidence derived from clinical trials and studies in preclinical animal models regarding the role of androgen receptor (AR) signaling in the pathophysiology of males with obesity. We also discuss therapeutic strategies targeting the AR for the treatment of obesity and their limitations and provide insight into the future research necessary to advance this field. https://doi.org/10.1111/obr.13429

Read More

Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1

Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high-caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the ...

Read More

Effect of Aerobic or Resistance Exercise, or Both, on Intermuscular and Visceral Fat and Physical and Metabolic Function in Older Adults With Obesity While Dieting

Background: Obesity exacerbates age-related effects on body composition and physical and metabolic function. Which exercise mode is most effective in mitigating these deleterious changes in dieting older adults with obesity is unknown. Methods: In a randomized controlled trial, we performed a head-to-head comparison of aerobic (AEX), resistance (REX), or combination (COMB) exercise during matched ~10% weight loss in 160 obese older adults. Prespecified analyses compared 6-month changes in intermuscular ...

Read More

Exercise training modulates adipokines dysregulations in metabolic syndrome

Metabolic syndrome (MetS) is a cluster of risk factors for various metabolic diseases, and it is characterized by central obesity, dyslipidemia, hypertension, and insulin resistance. The core component for MetS is adipose tissue, which releases adipokines and influences physical health. Adipokines consist of pro and anti-inflammatory cytokines and contribute to various physiological functions. Generally, a sedentary lifestyle promotes fat accumulation and secretion of pro-inflammatory adipokines. ...

Read More

Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms

As human life expectancy increases, cognitive decline and memory impairment threaten independence and quality of life. Therefore, finding prevention and treatment strategies for memory impairment is an important health concern. Moreover, a better understanding of the mechanisms involved underlying memory preservation will enable the development of appropriate pharmaceuticals drugs for those who are activity limited. Exercise training as a non-pharmacological tool, has been known to increase the mean ...

Read More

A new paradigm in sarcopenia: Cognitive impairment caused by imbalanced myokine secretion and vascular dysfunction

Sarcopenia characterized by reduced skeletal muscle mass and decreased muscle strength is increasing in prevalence globally. The pathophysiology of sarcopenia is related to various factors including hormonal imbalance, increased intracellular oxidative stress, reduction of food intake, advanced age, low body mass index, and low physical activity. Recently, sarcopenia has been reported to be associated with cognitive decline, and the common risk factors between sarcopenia and memory loss were observed ...

Read More

Influence of adiponectin and inflammatory cytokines in fatty degenerative atrophic muscle

Tendon rupture and nerve injury cause fatty infiltration of the skeletal muscle, and the adipokines secreted from the infiltrated adipocytes are known to contribute to chronic inflammation. Therefore, in this study, we evaluated the effects of the adipokines on chronic inflammation using a rat sciatic nerve-crushed injury model. In vitro and in vivo experiments showed that the expression of adiponectin was decreased (0.3-fold) and the expression of Il6 (~ 3.8-fold) and Tnf (~ 6.2-fold) ...

Read More

Adipocyte-specific Nos2 deletion improves insulin resistance and dyslipidemia through brown fat activation in diet-induced obese mice

Objective: Inducible nitric oxide (NO) synthase (NOS2) is a well-documented inflammatory mediator of insulin resistance in obesity. NOS2 expression is induced in both adipocytes and macrophages within adipose tissue during high-fat (HF)-induced obesity. Methods: Eight-week-old male mice with adipocyte selective deletion of the Nos2 gene (Nos2AD−KO) and their wildtype littermates (Nos2fl/fl) were subjected to chow or high-fat high-sucrose (HFHS) diet for 10 weeks followed by metabolic phenotyping ...

Read More

Irisin: circulating levels in serum and its relation to gonadal axis

Irisin is an exercise-induced myokine/adipokine in mice and humans that plays an important role in ‘browning’ of white adipose tissue and has shown great potential as a treatment for some metabolic diseases, such as obesity, insulin resistance, and inflammation. The circulating irisin level is reported to be associated with exercise, obesity, diet, diseases, and exposure to different pharmacological agents. Several studies have attempted to characterize the role of irisin in PCOS and ...

Read More

Irisin and Secondary Osteoporosis in Humans

Irisin is a peptide secreted by skeletal muscle following exercise that plays an important role in bone metabolism. Numerous experiments in vitro and in mouse models have shown that the administration of recombinant irisin promotes osteogenesis, protects osteocytes from dexamethasone-induced apoptosis, prevents disuse-induced loss of bone and muscle mass, and accelerates fracture healing. Although some aspects still need to be elucidated, such as the dose- and frequency-dependent effects of irisin ...

Read More

The mediating roles of demand and satisfaction in formation process of physical exercise habits among college students

Considering the situation and disadvantages of being physically inactive as well as the nature and advantages of doing physical exercise regularly, there is a need to explore how physical exercise habits are cultivated and formed. The study was to examine the formation process of physical exercise habits. According to the Model of Physical Exercise and Habit, It was speculated that satisfaction, demand or chain from satisfaction to demand could mediate the relationship between physical exercise behavior ...

Read More

The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and meta-analysis

The gut microbiome may be a mediator between obesity and health outcomes. However, it is unclear how intentional weight loss changes the gut microbiota and intestinal permeability. We aimed to systematically review and quantify this association. We searched Medline, Embase, CINAHL, Cochrane databases, and trial registries until June 2020 (PROSPERO: CRD42020205292). We included trials of weight loss interventions (energy-restricted diets, pharmacotherapy, bariatric surgery) reporting on the microbiome. ...

Read More

Body mass index and cognitive decline among community-living older adults: the modifying effect of physical activity

Objective: To examine the associations between BMI categories and subsequent 3-year cognitive decline among older adults, and to test whether physical activity modifies the associations. Methods: Study sample included n = 1028 cognitively unimpaired older adults participating in the Étude sur la Santé des Aînés (ESA)-Services longitudinal study and followed 3 years later. Cognitive decline was defined as a decrease of > 3 points in MMSE scores ...

Read More

The Impact of a High-Carbohydrate/Low Fat vs. Low-Carbohydrate Diet on Performance and Body Composition in Physically Active Adults: A Cross-Over Controlled Trial

Background: Recently, high-carbohydrate or low-carbohydrate (HC/LC) diets have gained substantial popularity, speculated to improve physical performance in athletes; however, the effects of short-term changes of the aforementioned nutritional interventions remain largely unclear. Methods: The present study investigated the impact of a three-week period of HC/low-fat (HC) diet followed by a three-week wash-out-phase and subsequent LC diet on the parameters of physical capacity assessed via cardiopulmonary ...

Read More

Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis

Tissue sensitivity and response to exercise vary according to the time of day and alignment of circadian clocks, but the optimal exercise time to elicit a desired metabolic outcome is not fully defined. To understand how tissues independently and collectively respond to timed exercise, we applied a systems biology approach. We mapped and compared global metabolite responses of seven different mouse tissues and serum after an acute exercise bout performed at different times of the day. Comparative ...

Read More

All roads lead to Rome — a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer's disease

Age-related neurodegenerative disorders such as Alzheimer’s disease (AD) have become a critical public health issue due to the significantly extended human lifespan, leading to considerable economic and social burdens. Traditional therapies for AD such as medicine and surgery remain ineffective, impractical, and expensive. Many studies have shown that a variety of bioactive substances released by physical exercise (called “exerkines”) help to maintain and improve the normal functions ...

Read More

Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism

Exercise and physical activity induces physiological responses in organisms, and adaptations in skeletal muscle, which is beneficial for maintaining health and preventing and/or treating most chronic diseases. These adaptations are mainly instigated by transcriptional responses that ensue in reaction to each individual exercise, either resistance or endurance. Consequently, changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as both an early and late response to exercise, ...

Read More

Enrichment of the exocytosis protein STX4 in skeletal muscle remediates peripheral insulin resistance and alters mitochondrial dynamics via Drp1

Mitochondrial dysfunction is implicated in skeletal muscle insulin resistance. Syntaxin 4 (STX4) levels are reduced in human diabetic skeletal muscle, and global transgenic enrichment of STX4 expression improves insulin sensitivity in mice. Here, we show that transgenic skeletal muscle-specific STX4 enrichment (skmSTX4tg) in mice reverses established insulin resistance and improves mitochondrial function in the context of diabetogenic stress. Specifically, skmSTX4tg reversed insulin resistance caused ...

Read More

Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity

In recent years, mounting evidence from animal models and studies in humans has accumulated for the role of cardiovascular exercise (CE) in improving motor performance and learning. Both CE and motor learning may induce highly dynamic structural and functional brain changes, but how both processes interact to boost learning is presently unclear. Here, we hypothesized that subjects receiving CE would show a different pattern of learning-related brain plasticity compared to non-CE controls, which in ...

Read More

Abnormal whole-body energy metabolism in iron-deficient humans despite preserved skeletal muscle oxidative phosphorylation

Iron deficiency impairs skeletal muscle metabolism. The underlying mechanisms are incompletely characterised, but animal and human experiments suggest the involvement of signalling pathways co-dependent upon oxygen and iron availability, including the pathway associated with hypoxia-inducible factor (HIF). We performed a prospective, case–control, clinical physiology study to explore the effects of iron deficiency on human metabolism, using exercise as a stressor. Thirteen iron-deficient (ID) ...

Read More

Behavioural and neuroplastic effects of a double-blind randomised controlled balance exercise trial in people with Parkinson’s disease

Balance dysfunction is a disabling symptom in people with Parkinson’s disease (PD). Evidence suggests that exercise can improve balance performance and induce neuroplastic effects. We hypothesised that a 10-week balance intervention (HiBalance) would improve balance, other motor and cognitive symptoms, and alter task-evoked brain activity in people with PD. We performed a double-blind randomised controlled trial (RCT) where 95 participants with PD were randomised to either HiBalance (n = 48) ...

Read More

The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review

The physiological effects of physical exercise are ubiquitously reported as beneficial to the cardiovascular and musculoskeletal systems. Exercise is widely promoted by medical professionals to aid both physical and emotional wellbeing; however, mechanisms through which this is achieved are less well understood. Despite numerous beneficial attributes, certain types of exercise can inflict significant significant physiological stress. Several studies document a key relationship between exercise and ...

Read More

Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle

Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s ...

Read More

Myokine Irisin promotes osteogenesis by activating BMP/SMAD signaling via αV integrin and regulates bone mass in mice

Irisin is well-known to contribute to bone homeostasis due to its bidirectional regulation on osteogenesis and osteoclastogenesis. However, the mechanisms of irisin involved in mesenchymal stem/stromal cells (MSCs)-derived osteogenesis are still under investigated. Fibronectin type III domain-containing protein 5 (FNDC5) is the precursor protein of irisin, compare with wild type (WT) littermates, FNDC5-/- mice lost bone mass significantly, collectively evidenced by the decrease of bone mineral density ...

Read More

Inter-organ Crosstalk in Pancreatic Islet Function and Pathology

Pancreatic β cells secrete insulin in response to glucose, a process that is regulated at multiple levels, including a network of input signals from other organ systems. Impaired islet function contributes the pathogenesis of type 2 diabetes mellitus (T2DM) and targeting inter-organ communications, such as GLP-1 signalling, to enhance β cell function has been proven to be a successful therapeutic strategy in the last decade. In this review, we will discuss recent advances in inter-organ ...

Read More

Skeletal muscle derived Musclin protects the heart during pathological overload

Cachexia is associated with poor prognosis in chronic heart failure patients, but the underlying mechanisms of cachexia triggered disease progression remain poorly understood. Here, we investigate whether the dysregulation of myokine expression from wasting skeletal muscle exaggerates heart failure. RNA sequencing from wasting skeletal muscles of mice with heart failure reveals a reduced expression of Ostn, which encodes the secreted myokine Musclin, previously implicated in the enhancement of natriuretic ...

Read More

Identification of a regulatory pathway inhibiting adipogenesis via RSPO2

Healthy adipose tissue remodeling depends on the balance between de novo adipogenesis from adipogenic progenitor cells and the hypertrophy of adipocytes. De novo adipogenesis has been shown to promote healthy adipose tissue expansion, which confers protection from obesity-associated insulin resistance. Here, we define the role and trajectory of different adipogenic precursor subpopulations and further delineate the mechanism and cellular trajectory of adipogenesis, using single-cell RNA-sequencing ...

Read More

Protective effects of physical activity in colon cancer and underlying mechanisms: A review of epidemiological and biological evidence

Numerous epidemiological studies indicate that physical activity has a protective effect against colon cancer development and progression. Further, the relevant biological mechanisms where physical activity or exercise may improve survival have also been initially examined. In this review, we provide an overview of the epidemiological evidence to date which comprises 16 cohort studies of the effects of physical activity on colon cancer outcomes including cancer recurrence, cancer-specific and overall ...

Read More

Iron chelation increases beige fat differentiation and metabolic activity, preventing and treating obesity

Beige and brown fat consume glucose and lipids to produce heat, using uncoupling protein 1 (UCP1). It is thought that full activation of brown adipose tissue (BAT) may increase total daily energy expenditure by 20%. Humans normally have more beige and potentially beige-able fat than brown fat. Strategies to increase beige fat differentiation and activation may be useful for the treatment of obesity and diabetes. Mice were fed chow or high-fat diet (HFD) with or without the iron chelator deferasirox. ...

Read More

Effects of paternal overnutrition and interventions on future generations

In the last two decades, evidence from human and animal studies suggests that paternal obesity around the time of conception can have adverse effects on offspring health through developmental programming. This may make significant contributions to the current epidemic of obesity and related metabolic and reproductive complications like diabetes, cardiovascular disease, and subfertility/infertility. To date, changes in seminal fluid composition, sperm DNA methylation, histone composition, small non-coding ...

Read More

Safety, efficacy and delivery of isometric resistance training as an adjunct therapy for blood pressure control: a modified Delphi study

Uncontrolled hypertension remains the major risk factor for cardiovascular disease. Isometric resistance training (IRT) has been shown to be a useful nonpharmacological therapy for reducing blood pressure (BP); however, some exercise physiologists and other health professionals are uncertain of the efficacy and safety of IRT. Experts’ consensus was sought in light of the current variability of IRT use as an adjunct treatment for hypertension. An expert consensus-building analysis (Delphi study) ...

Read More

Quadriceps physiological response during the 1-min sit-to-stand test in people with severe COPD and healthy controls

We compared quadriceps oxygenation and surface electromyography (sEMG) responses during the 1-min sit-to-stand (1STS) in 14 people with severe COPD and 12 controls, in whom cardiorespiratory response, near-infrared spectroscopy signals (oxy [Hb-Mb], deoxy [Hb-Mb], total [Hb-Mb], and SmO2) and sEMG signals of the quadriceps were recorded. Time duration of each sit-to-stand cycle and the total work performed during the 1STS were measured. The quadriceps oxygenation parameters were normalized by reporting ...

Read More

Association between the recognition of muscle mass and exercise habits or eating behaviors in female college students

This study aimed to examine the association between muscle mass and perception of body shape, desired body shape, physical strength, exercise habits, and eating behaviors. Height, weight, and body composition in 270 female university students were measured. The questionnaire on body shape perception, desired body shape, dieting experience, current, and past exercise habits, exercise preference, and eating behaviors were administered. The analysis of covariance with body fat mass as the covariate ...

Read More

Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines

Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has ...

Read More

Factors Mediating Exercise-induced Organ Crosstalk

Exercise activates a plethora of metabolic and signalling pathways in skeletal muscle and other organs causing numerous systemic beneficial metabolic effects. Thus, regular exercise may ameliorate and prevent the development of several chronic metabolic diseases. Skeletal muscle is recognized as an important endocrine organ regulating systemic adaptations to exercise. Skeletal muscle may mediate crosstalk with other organs through the release of exercise-induced cytokines, peptides and proteins, ...

Read More

Endothelial NOX5 Expression Modulates Thermogenesis and Lipolysis in Mice Fed with a High-Fat Diet and 3T3-L1 Adipocytes through an Interleukin-6 Dependent Mechanism

Obesity is a global health issue associated with the development of metabolic syndrome, which correlates with insulin resistance, altered lipid homeostasis, and other pathologies. One of the mechanisms involved in the development of these pathologies is the increased production of reactive oxygen species (ROS). One of the main producers of ROS is the family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, among which NOX5 is the most recently discovered member. The aim of the present ...

Read More

Equal-Volume Strength Training With Different Training Frequencies Induces Similar Muscle Hypertrophy and Strength Improvement in Trained Participants

The main goal of the current study was to compare the effects of volume-equated training frequency on gains in muscle mass and strength. In addition, we aimed to investigate whether the effect of training frequency was affected by the complexity, concerning the degrees of freedom, of an exercise. Participants were randomized to a moderate training frequency group (two weekly sessions) or high training frequency group (four weekly sessions). Twenty-one participants (male: 11, female: 10, age: 25.9 ...

Read More

Hepatic p38 Activation Modulates Systemic Metabolism Through FGF21-Mediated Interorgan Communication

The mechanisms underlying the pathogenesis of steatosis and insulin resistance in nonalcoholic fatty liver disease remain elusive. Increased phosphorylation of hepatic p38 has long been noticed in fatty liver; however, whether the activation of hepatic p38 is a cause or consequence of liver steatosis is unclear. Here, we demonstrate that hepatic p38 activation by MKK6 overexpression in the liver of mice induces severe liver steatosis, reduces fat mass, and elevates circulating fatty acid levels in ...

Read More

Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future

Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, and enlargement of the diameter of hepatocytes (ballooning hepatocytes), with or without fibrosis. It affects 20% of patients with non-alcoholic fatty liver disease (NAFLD). Due to liver dysfunction and the numerous metabolic changes that commonly accompany the condition (obesity, insulin resistance, type 2 diabetes, and metabolic syndrome), the secretion of organokines is modified, which may contribute to the ...

Read More

FGF1 and insulin control lipolysis by convergent pathways

Inexorable increases in insulin resistance, lipolysis, and hepatic glucose production (HGP) are hallmarks of type 2 diabetes. Previously, we showed that peripheral delivery of exogenous fibroblast growth factor 1 (FGF1) has robust anti-diabetic effects mediated by the adipose FGF receptor (FGFR) 1. However, its mechanism of action is not known. Here, we report that FGF1 acutely lowers HGP by suppressing adipose lipolysis. On a molecular level, FGF1 inhibits the cAMP-protein kinase A axis by activating ...

Read More

Aging Leukocytes and the Inflammatory Microenvironment of the Adipose Tissue

Age-related immunosenescence, defined as an increase in inflammaging and the decline of the immune system, leads to tissue dysfunction and increased risk for metabolic disease. The elderly population is expanding, leading to a heightened need for therapeutics to improve health span. With age, many alterations of the immune system are observed, including shifts in the tissue-resident immune cells, increased expression of inflammatory factors, and the accumulation of senescent cells, all of which are ...

Read More

Aerobic Exercise Combination Intervention to Improve Physical Performance Among the Elderly: A Systematic Review

The benefits of aerobic exercise for the elderly are well-known. They extend beyond cardiovascular changes and can reduce the inactivity-induced loss of strength, mobility, balance, and endurance that are vital for the safe performance of daily activities in older adults. However, the benefits of combined aerobic exercise with other exercises such as strength/resistance, multi-component and aerobic exercise remain unknown. The purpose of this study is to examine the effects of combined aerobic exercise ...

Read More

May the Force and Mass Be With You – Evidence-Based Contribution of Mechano-Biological Descriptors of Resistance Exercise

Skeletal muscle is one of the most important tissues of the human body. It comprises up to 40% of the body mass and is crucial to survival. Hence, the maintenance of skeletal muscle mass and strength is pivotal. It is well-established that resistance exercise provides a potent anabolic stimulus to increase muscle mass and strength in men and women of all ages. Resistance exercise consists of mechano-biological descriptors, such as load, muscle action, number of repetitions, repetition duration, number ...

Read More

The effect of toll-like receptor ligands on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells

Skeletal muscle plays an important role in glycaemic control and metabolic homeostasis, making it a tissue of interest with respect to type 2 diabetes mellitus. The aim of the present study was to determine if ligands of Toll-like receptors (TLRs) could have an impact on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells. The myotubes expressed mRNA for TLRs 1–6. TLR3, TLR4, TLR5 and TLR6 ligands (TLRLs) increased glucose metabolism. Furthermore, ...

Read More

The short and long-term effects of aerobic, strength, or mixed exercise programs on schizophrenia symptomatology

The purpose of this study was to compare the effects of three different physical exercise programs on the symptomatology, body composition, physical activity, physical fitness, and quality of life of individuals with schizophrenia. A total of 432 patients were assessed for eligibility and 86 were randomized into the aerobic (n = 28), strength (n = 29) or mixed (n = 29) groups. Positive, negative, and general symptoms of psychosis, body mass index (BMI), physical ...

Read More

Caffeine increases performance and leads to a cardioprotective effect during intense exercise in cyclists

The present study was designed to investigate the effects of different caffeine dietary strategies to compare the impact on athletic performance and cardiac autonomic response. The order of the supplementation was randomly assigned: placebo(4-day)-placebo(acute)/PP, placebo(4-day)-caffeine(acute)/PC and caffeine(4-day)-caffeine(acute)/CC. Fourteen male recreationally-trained cyclists ingested capsules containing either placebo or caffeine (6 mg kg−1) for 4 days. On day 5 (acute), capsules containing ...

Read More

Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles

Heterochronic blood exchange (HBE) has demonstrated that circulating factors restore youthful features to aged tissues. However, the systemic mediators of those rejuvenating effects remain poorly defined. We show here that the beneficial effect of young blood on aged muscle regeneration was diminished when serum was depleted of extracellular vesicles (EVs). Whereas EVs from young animals rejuvenate aged cell bioenergetics and skeletal muscle regeneration, aging shifts EV subpopulation heterogeneity ...

Read More

Eccentric Exercise: Adaptations and Applications for Health and Performance

The goals of this narrative review are to provide a brief overview of the muscle and tendon adaptations to eccentric resistance exercise and address the applications of this form of training to aid rehabilitative interventions and enhance sports performance. This work is centered on the author contributions to the Special Issue entitled "Eccentric Exercise: Adaptations and Applications for Health and Performance". The major themes from the contributing authors include the need to place greater attention ...

Read More

Muscle-to-fat ratio identifies functional impairments and cardiometabolic risk and predicts outcomes: biomarkers of sarcopenic obesity

Background: Sarcopenic obesity aims to capture the risk of functional decline and cardiometabolic diseases, but its operational definition and associated clinical outcomes remain unclear. Using data from the Longitudinal Aging Study of Taipei, this study explored the roles of the muscle-to-fat ratio (MFR) with different definitions and its associations with clinical characteristics, functional performance, cardiometabolic risk and outcomes. Methods: (1) Appendicular muscle mass divided by total ...

Read More

Short and long-term effects of high-intensity interval training applied alone or with whole-body cryostimulation on glucose homeostasis and myokine levels in overweight to obese subjects

Background: COVID-19 pandemic has exacerbated the problem of physical inactivity and weight gain. Consequently, new strategies to counteract weight gain are being sought. Because of their accessibility, interval training and cold therapy are the most popular such strategies. We here aimed to examine the effect of 6 units of high-intensity interval training (HIIT), applied alone or in combination with 10 sessions of whole-body cryotherapy (WBC; 3 min at –110 ∘C per session) on incretins, ...

Read More

The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes

Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking ...

Read More

β3-adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity

The dysregulation of energy homeostasis in obesity involves multi-hormone resistance. Although leptin and insulin resistance have been well characterized, catecholamine resistance remains largely unexplored. Murine β3-adrenergic receptor expression in adipocytes is orders of magnitude higher compared to other isoforms. While resistant to classical desensitization pathways, its mRNA (Adrb3) and protein expression are dramatically downregulated after ligand exposure (homologous desensitization). ...

Read More

Dietary supplements consumption and its association with socioeconomic factors, obesity and main non-communicable chronic diseases in the north of Iran: the PERSIAN Guilan Cohort Study (PGCS)

Background: Dietary supplements (DSs) use have become a growing trend worldwide, and it may be affected by demographic and sociocultural factors. Some people use supplements with the thought that they can improve their health, reduce symptoms and prevent disease. The aim of the present study was to define the frequency of DS use and its association with socioeconomic factors among participants with selected main non-communicable chronic diseases (NCDs) (diabetes, cardiovascular disease (CVD), hypertension ...

Read More

Pathways in Skeletal Muscle: Protein Signaling and Insulin Sensitivity after Exercise Training and Weight Loss Interventions in Middle-Aged and Older Adults

Aging and obesity contribute to insulin resistance with skeletal muscle being critically important for maintaining whole-body glucose homeostasis. Both exercise and weight loss are lifestyle interventions that can affect glucose metabolism. The purpose of this study was to examine the effects of a six-month trial of aerobic exercise training or weight loss on signaling pathways in skeletal muscle in the basal condition and during hyperinsulinemia during a glucose clamp in middle-aged and older adults. ...

Read More

Transcriptomic adaptation during skeletal muscle habituation to eccentric or concentric exercise training

Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise ‘habituation’). Despite habituation attenuating total numbers of exercise-induced ...

Read More

Lack of Endothelial α1AMPK Reverses the Vascular Protective Effects of Exercise by Causing eNOS Uncoupling

Voluntary exercise training is an effective way to prevent cardiovascular disease, since it results in increased NO bioavailability and decreased reactive oxygen species (ROS) production. AMP-activated protein kinase (AMPK), especially its α1AMPK subunit, modulates ROS-dependent vascular homeostasis. Since endothelial cells play an important role in exercise-induced changes of vascular signaling, we examined the consequences of endothelial-specific α1AMPK deletion during voluntary exercise ...

Read More

Comparing Acute, High Dietary Protein and Carbohydrate Intake on Transcriptional Biomarkers, Fuel Utilisation and Exercise Performance in Trained Male Runners

Manipulating dietary macronutrient intake may modulate adaptive responses to exercise, and improve endurance performance. However, there is controversy as to the impact of short-term dietary modification on athletic performance. In a parallel-groups, repeated measures study, 16 trained endurance runners (maximal oxygen uptake (V˙O2max): 64.2 ± 5.6 mL·kg−1·min−1) were randomly assigned to, and provided with, either a high-protein, reduced-carbohydrate (PRO) or a high-carbohydrate ...

Read More

Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects

Several members of the FGF family have been identified as potential regulators of glucose homeostasis. We previously reported that a low threshold of FGF-induced FGF receptor 1c (FGFR1c) dimerization and activity is sufficient to evoke a glucose lowering activity. We therefore reasoned that ligand identity may not matter, and that besides paracrine FGF1 and endocrine FGF21, other cognate paracrine FGFs of FGFR1c might possess such activity. Indeed, via a side-by-side testing of multiple cognate FGFs ...

Read More

Balance of Autonomic Nervous Activity, Exercise, and Sleep Status in Older Adults: A Review of the Literature

While older people are frequently known to experience sleep disturbances, there are also many older people who have a good quality of sleep. However, little is known about the balance of autonomic nervous activity, exercise habits, and sleep status in healthy older adults. This study reviews the literature regarding balance of the autonomic nervous activity, exercise, and sleep in healthy older adults. Relevant articles were searched from electronic databases using the combination of the following ...

Read More

The effect of exercise training interventions in adult kidney transplant recipients: a systematic review and meta-analysis of randomised control trials

Background: Kidney transplant recipients (KTRs) are characterised by adverse changes in physical fitness and body composition. Post-transplant management involves being physically active, although evidence for the effect of exercise is limited. Objective: To assess the effects of exercise training interventions in KTRs. Methods: NCBI PubMed (MEDLINE) and CENTRAL (EMBASE, WHO ICTRP) databases were searched up to March 2021 to identify eligible randomized controlled trials (RCTs) that studied exercise ...

Read More

Effects of 5 Years Aerobic Exercise on Cognition in Older Adults: The Generation 100 Study: A Randomized Controlled Trial

Objective: The objective of this study was to investigate whether a 5-year exercise intervention and change in peak oxygen uptake (VO2peak) is associated with cognitive function in older adults. Methods: Nine hundred and forty-five participants (48% women, mean age at study end 78.2 ± 2.02 years) from the Generation 100 Study were randomized 2:1:1 to a control group, moderate-intensity continuous training or high-intensity interval training twice weekly for 5 years. Peak oxygen ...

Read More

Exercise for counteracting post-acute COVID-19 syndrome in patients with cancer: an old but gold strategy?

Coronavirus disease (COVID-19) infection has caused morbidity and mortality at an unprecedented scale [1]. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel beta coronavirus responsible for new respiratory infections with mild-to-severe presentations in humans. At the beginning of the pandemic, major attention was directed to investigate the acute effect of COVID-19, as well as to identify potential therapeutic and preventive strategies to control the virus spread. More ...

Read More

The role of physical exercise intensity to irisin levels on overweight and obese

Physical exercise is a non-pharmacological therapy that can secrete various types of myokines to treat obesity problems. One of the myokines that play a role is irisin. Irisin is a polypeptide hormone with 112 amino acid residues that are synthesized in skeletal muscle after the proteolytic precursor cleavage of fibronectin type III domain-containing protein 5 (FNDC5). The release of irisin in the blood circulation will stimulate the browning process in white fat tissue by inducing the expression ...

Read More

Exercise rather than fluoxetine promotes oligodendrocyte differentiation and myelination in the hippocampus in a male mouse model of depression

Although selective serotonin reuptake inhibitor (SSRI) systems have been meaningfully linked to the clinical phenomena of mood disorders, 15–35% of patients do not respond to multiple SSRI interventions or even experience an exacerbation of their condition. As we previously showed, both running exercise and fluoxetine reversed depression-like behavior. However, whether exercise reverses depression-like behavior more quickly than fluoxetine treatment and whether this rapid effect is achieved ...

Read More

Effects of exercise training on behavior and brain function after high dose isoproterenol-induced cardiac damage

Acute sympathetic stress can result in cardiac fibrosis, but may also lead to mental dysfunction. Exercise training after isoproterenol (ISO)-induced acute sympathetic stress was investigated regarding cardiac damage, neuroinflammation, brain function and behavior. Male Wistar rats (12 months) received ISO or saline. One week later, treadmill running or control handling (sedentary) started. After 4 weeks, cognitive- and exploratory behavior were evaluated, and heart and brain tissues were analyzed ...

Read More

Exercise reduces systemic immune inflammation index (SII) in childhood cancer patients

While exercise and physical activity have been suggested to reduce mortality and symptoms in cancer, knowledge on these associations in patients with childhood cancer (CCPs) is sparse. Anti-inflammatory properties of exercise might mediate these beneficial effects. We investigated the influence of exercise on the inflammation markers neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and systemic-immune-inflammation index (SII) and associations to patient-reported-outcomes in CCPs in a ...

Read More

The importance of protein sources to support muscle anabolism in cancer: An expert group opinion

This opinion paper presents a short review of the potential impact of protein on muscle anabolism in cancer, which is associated with better patient outcomes. Protein source is a topic of interest for patients and clinicians, partly due to recent emphasis on the supposed non-beneficial effect of proteins; therefore, misconceptions involving animal-based (e.g., meat, fish, dairy) and plant-based (e.g., legumes) proteins in cancer are acknowledged and addressed. Although the optimal dietary amino acid ...

Read More

Are people who use active modes of transportation more physically active? An overview of reviews across the life course

Regular physical activity prevents several non-communicable chronic conditions and premature mortality. The benefits of physical activity can be achieved through active transport, which refers to non-motorised/active means (e.g. walking, cycling, rollerblading) to move from one place to another. Active transport can be integrated into daily routines such as commuting to and from school and work. We undertook an overview of reviews to examine the association between active transport and physical activity ...

Read More

Dose Response of Acute ATP Supplementation on Strength Training Performance

Background: Chronic oral ATP supplementation benefits cardiovascular health, muscular performance, body composition, and recovery while attenuating muscle breakdown and fatigue. A single 400 mg dose of oral ATP supplementation improved lower body resistance training performance and energy expenditure in recreational resistance trained males, however, the minimal effective dose is currently unknown. Materials and Methods: Twenty recreationally trained men (age 28.6 ± 1.0 years, body mass 81.2 ...

Read More

Resistance training induces similar adaptations of upper and lower-body muscles between sexes

The purpose of the study was to compare sex adaptations in hypertrophy, strength and contractile properties of upper and lower-body muscles induced by resistance training (RT). Eighteen RT untrained male (MG) and female (FG) students (aged 24.1 ± 1.7 years, height: 1.75 ± 0.08 m, weight: 70.4 ± 12.3 kg) undervent 7 weeks of biceps curl and squat training (2 days/week, 60–70% repetition maximum, 3–4 sets, 120 s rest intervals, ...

Read More

Myostatin and Sarcopenia in Elderly Among Haemodyalisis Patient

Background and Objective: Increased serum myostatin level might be one of the causes of impaired protein synthesis and protein degradation associated with decreased muscle mass accompanying older age, which is a component of sarcopenia in CKD patients undergoing hemodialysis. There are still very limited number of studies with varying and contradictory results. This study aims to analyze the relationship between serum myostatin and sarcopenia levels in elderly chronic kidney disease patients undergoing ...

Read More

Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males

High-intensity interval training (HIIT) improves cardiorespiratory fitness (VO2max), but its impact on metabolism remains unclear. We hypothesized that 12-week HIIT increases insulin sensitivity in males with or without type 2 diabetes [T2D and NDM (nondiabetic humans)]. However, despite identically higher VO2max, mainly insulin-resistant (IR) persons (T2D and IR NDM) showed distinct alterations of circulating small extracellular vesicles (SEVs) along with lower inhibitory metabolic (protein kinase ...

Read More

High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content

Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We ...

Read More

Genomics and transcriptomics landscapes associated to changes in insulin sensitivity in response to endurance exercise training

Despite good adherence to supervised endurance exercise training (EET), some individuals experience no or little improvement in peripheral insulin sensitivity. The genetic and molecular mechanisms underlying this phenomenon are currently not understood. By investigating genome-wide variants associated with baseline and exercise-induced changes (∆) in insulin sensitivity index (Si) in healthy volunteers, we have identified novel candidate genes whose mouse knockouts phenotypes were consistent with ...

Read More

The ups and downs of caloric restriction and fasting: from molecular effects to clinical application

Age-associated diseases are rising to pandemic proportions, exposing the need for efficient and low-cost methods to tackle these maladies at symptomatic, behavioral, metabolic, and physiological levels. While nutrition and health are closely intertwined, our limited understanding of how diet precisely influences disease often precludes the medical use of specific dietary interventions. Caloric restriction (CR) has approached clinical application as a powerful, yet simple, dietary modulation that ...

Read More

Effects of Exercise Type and Intensity on Visfatin and the Metabolic Syndrome in Obesity

Objective: Visfatin may regulate a variety of physiological functions and it has great potential to significantly enhance our knowledge of the treatment of metabolic syndrome. Metabolic syndrome (MS) refers to metabolic abnormalities, such as abdominal obesity, dyslipidemia, high low-density cholesterol, high blood pressure and diabetes, and physical activity is an important factor for the management of MS. Therefore, the purpose of this study is to investigate the effects of visfatin on MS and MS ...

Read More

Ursolic acid does not change the cytokine levels following resistance training in healthy men: A pilot balanced, double-blind and placebo-controlled clinical trial

Ursolic acid (UA) is a natural compound that shows anti-inflammatory actions. However, no human studies have investigated the cytokine profile during the RT and UA consumption. The purpose of this study was to verify if UA is able to potentiate the anti-inflammatory activity after RT, reflecting in the reduction of blood inflammatory markers in healthy men. Twenty-seven participants were allocated to two groups: control (CON) (n = 13) and UA (n = 14). For 8 weeks, each group performed RT and consumed ...

Read More

Mucin secretory action of capsaicin prevents high fat diet-induced gut barrier dysfunction in C57BL/6 mice colon

The gut barrier – including tight junction proteins (TJPs) and mucus layers, is the first line of defense against physical, chemical or pathogenic incursions. This barrier is compromised in various health disorders. Capsaicin, a dietary agonist of Transient receptor potential vanilloid 1 (TRPV1) channel, is reported to alleviate the complications of obesity. While it is well known to improve energy expenditure and metabolism, and prevent dysbiosis, the more local effects on the host gut – ...

Read More

Egg and saturated fat containing breakfasts have no acute effect on acute glycemic control in healthy adults: a randomized partial crossover trial

Background/Objectives: High egg consumption is associated with poor glycemic control. Considering the widespread consumption of eggs, it is crucial to determine causality in this association. We tested if egg consumption acutely alters glucose disposal in the absence or presence of saturated fat, which is frequently consumed with eggs. Subjects/Methods: In a randomized partial crossover clinical trial, 48 subjects (consuming ≥ 1 egg/week) received two of four isocaloric, macronutrient-matched ...

Read More

Is Obesity/Adiposity-Based Chronic Disease Curable: The Set Point Theory, the Environment, and Second Generation Medications

Adiposity-Based Chronic Disease (ABCD) is a chronic disease and requires life-long treatment and follow-up. Obesity protects obesity through altered regulation of caloric intake and set point mechanisms that maintains a high equilibrium body weight. Lifestyle interventions and obesity medications do not permanently alter the set point which often makes weight loss achieved by lifestyle short-lived and operates to drive weight regain once medications are discontinued. Bariatric surgery procedures ...

Read More

Health Effects of Increasing Protein Intake Above the Current Population Reference Intake in Older Adults: A Systematic Review of the Health Council of the Netherlands

Whether older adults need more protein than younger adults is debated. The population reference intake for adults set by the European Food Safety Authority is 0.83 g/kg body weight (BW)/d based primarily on nitrogen balance studies, but the underlying data on health outcomes are outdated. An expert committee of the Health Council of the Netherlands conducted a systematic review (SR) of randomized controlled trials (RCTs) examining the effect of increased protein intake on health outcomes in older ...

Read More

Acute exercise increases immune responses to SARS CoV-2 in a previously infected man

Evidence is emerging that exercise and physical activity provides protection against severe COVID-19 disease in patients infected with SARS-CoV-2, but it is not known how exercise affects immune responses to the virus. A healthy man completed a graded cycling ergometer test prior to and after SARS-CoV-2 infection, then again after receiving an adenovirus vector-based COVID-19 vaccine. Using whole blood SARS-CoV-2 peptide stimulation assays, IFN-γ ELISPOT assays, flow cytometry, ex vivo viral-specific ...

Read More

Moderate exercise may prevent the development of severe forms of COVID-19, whereas high-intensity exercise may result in the opposite

Sedentary lifestyle increases the risk of hospitalization for COVID-19 independently of other factors. There is enough statistics to show that exercise prevents severe forms of COVID-19, but current recommendations do not set an upper limit for exercise intensity. The hypothesis presented in the paper states that intense exercise, through blood hypoxia, increases the expression of transmembrane angiotensin-converting enzyme 2 (tACE2) in the vascular endothelium, increasing the risk of developing ...

Read More

Effectiveness of Multicomponent Exercise Interventions in Older Adults With Dementia: A Meta-Analysis

Background and Objectives: Multicomponent training (MT) combines aerobic, strength, postural, and balance exercises and may be a promising intervention strategy for dementia. This meta-analysis study aims to systematize evidence concerning the effectiveness of MT in physical fitness, cognition, and functionality on activities of daily living (ADL) in older adults with dementia and to identify moderation patterns regarding training variables. Research Design and Methods: 4 databases were systematically ...

Read More

Calorie Restriction With Exercise Intervention Improves Inflammatory Response in Overweight and Obese Adults: A Systematic Review and Meta-Analysis

Background/Purpose: In this systematic review and meta-analysis, we assessed the effects of exercise (EX) combined with calorie restriction (CR) intervention on inflammatory biomarkers, and correlations between biomarkers and participants’ characteristics were calculated in overweight and obese adults. Methods: An article search was conducted through PubMed, Web of Science, EMBASE, the Cochrane database, Scopus, and Google Scholar to identify articles published up to April 2021. Studies that ...

Read More

Acute Aerobic Exercise Induces Short-Term Reductions in Ambulatory Blood Pressure in Patients With Hypertension: A Systematic Review and Meta-Analysis

Chronic exercise reduces clinic and ambulatory blood pressure (BP), but the short-term effects of an acute exercise bout on ambulatory BP have not been studied widely. We reviewed the literature regarding the short-term effects of acute exercise on ambulatory BP in patients with hypertension and considered moderating factors (medication status and exercise modality/intensity) on ambulatory BP outcomes. A systematic search was conducted (PubMed, Cochrane Library, and Scopus; since inception to January ...

Read More

Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat

Brown adipocytes share the same developmental origin with skeletal muscle. Here we find that a brown adipocyte-to-myocyte remodeling also exists in mature brown adipocytes, and is induced by prolonged high fat diet (HFD) feeding, leading to brown fat dysfunction. This process is regulated by the interaction of epigenetic pathways involving histone and DNA methylation. In mature brown adipocytes, the histone demethylase UTX maintains persistent demethylation of the repressive mark H3K27me3 at Prdm16 ...

Read More

Psychological and biological resilience modulates the effects of stress on epigenetic aging

Our society is experiencing more stress than ever before, leading to both negative psychiatric and physical outcomes. Chronic stress is linked to negative long-term health consequences, raising the possibility that stress is related to accelerated aging. In this study, we examine whether resilience factors affect stress-associated biological age acceleration. Recently developed “epigenetic clocks” such as GrimAge have shown utility in predicting biological age and mortality. Here, we ...

Read More

Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues

Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that ...

Read More

Lipolysis: cellular mechanisms for lipid mobilization from fat stores

The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and ...

Read More

The impact of muscle mass loss and deteriorating physical function on prognosis in patients receiving hemodialysis

Muscle mass loss and worsening physical function are crucial issues in patients receiving hemodialysis (HD). However, few studies have investigated the association between temporal changes in muscle mass and physical function in a large number of HD patients. We examined 286 patients receiving HD (males, 58%; age, 66.8 ± 13.0 years) at a single center, and calculated the percent changes in psoas muscle mass index (%PMI) using computed tomography over two screenings, once per ...

Read More

Obesity risk is associated with altered cerebral glucose metabolism and decreased μ-opioid and CB1 receptor availability

Background: Obesity is a pressing public health concern worldwide. Novel pharmacological means are urgently needed to combat the increase of obesity and accompanying type 2 diabetes (T2D). Although fully established obesity is associated with neuromolecular alterations and insulin resistance in the brain, potential obesity-promoting mechanisms in the central nervous system have remained elusive. In this triple-tracer positron emission tomography study, we investigated whether brain insulin signaling, ...

Read More

The manifold roles of protein S-nitrosylation in the life of insulin

Insulin, which is released by pancreatic islet β-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes ...

Read More

Brown adipose tissue prevents glucose intolerance and cardiac remodeling in high-fat-fed mice after a mild myocardial infarction

Background: Obesity increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes (T2D) after myocardial infarction (MI). Brown adipose tissue (BAT) is important to combat obesity and T2D, and increasing BAT mass by transplantation improves glucose metabolism and cardiac function. The objective of this study was to determine if BAT had a protective effect on glucose tolerance and cardiac function in high-fat diet (HFD) fed mice subjected to a mild MI. Methods: Male C57BL/6 ...

Read More

Intramuscular fat in gluteus maximus for different levels of physical activity

We aimed to determine if gluteus maximus (GMAX) fat infiltration is associated with different levels of physical activity. Identifying and quantifying differences in the intramuscular fat content of GMAX in subjects with different levels of physical activity can provide a new tool to evaluate hip muscles health. This was a cross-sectional study involving seventy subjects that underwent Dixon MRI of the pelvis. The individuals were divided into four groups by levels of physical activity, from low ...

Read More

Effects of yoga in men with prostate cancer on quality of life and immune response: a pilot randomized controlled trial

Background: Diagnosis and treatment of prostate cancer is associated with anxiety, fear, and depression in up to one-third of men. Yoga improves health-related quality of life (QoL) in patients with several types of cancer, but evidence of its efficacy in enhancing QoL is lacking in prostate cancer. Methods: In this randomized controlled study, 29 men newly diagnosed with localized prostate cancer were randomized to yoga for 6 weeks (n = 14) or standard-of-care (n = 15) ...

Read More

Low-frequency exercise training improves cardiovascular fitness and strength during treatment for breast cancer: a single-arm intervention study

Aerobic and resistance exercise during and after cancer treatment are important for health-related outcomes, however treatment-specific barriers may inhibit adherence. We explored the effect of lower-frequency exercise training on fitness, body composition, and metabolic markers (i.e. glucose and lipids) in a group of recently diagnosed breast cancer patients. Fifty-two females ≥ 18 years with stage I–IIIB breast cancer were instructed to attend 2 cardiovascular and strength ...

Read More

The Metabolic Signature of Cardiorespiratory Fitness: A Systematic Review

Background: Cardiorespiratory fitness (CRF) is a potent health marker, the improvement of which is associated with a reduced incidence of non-communicable diseases and all-cause mortality. Identifying metabolic signatures associated with CRF could reveal how CRF fosters human health and lead to the development of novel health-monitoring strategies. Objective: This article systematically reviewed reported associations between CRF and metabolites measured in human tissues and body fluids. Methods: ...

Read More

Changes in white matter microstructure and MRI-derived cerebral blood flow after 1-week of exercise training

Exercise is beneficial for brain health, inducing neuroplasticity and vascular plasticity in the hippocampus, which is possibly mediated by brain-derived neurotrophic factor (BDNF) levels. Here we investigated the short-term effects of exercise, to determine if a 1-week intervention is sufficient to induce brain changes. Fifteen healthy young males completed five supervised exercise training sessions over seven days. This was preceded and followed by a multi-modal magnetic resonance imaging (MRI) ...

Read More

The KRAB Domain-Containing Protein ZFP961 Represses Adipose Thermogenesis and Energy Expenditure through Interaction with PPARα

Adipose thermogenesis plays a pivotal role in whole-body metabolic homeostasis. Although transcriptional mechanisms that promote thermogenesis are extensively studied, the negative regulatory network is still poorly understood. Here, a Krüppel-associated box (KRAB) domain-containing zinc finger protein, ZFP961, as a potent repressor of the thermogenic program is identified. ZFP961 expression is induced by cold and β3-adrenergic agonist in adipose tissue. ZFP961 represses brown fat-selective ...

Read More

Endurance exercise training-responsive miR-19b-3p improves skeletal muscle glucose metabolism

Skeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation. Overexpression of miR-19b-3p in human skeletal muscle cells increases insulin signaling, glucose uptake, and maximal oxygen consumption, ...

Read More

AMPK activator O304 improves metabolic and cardiac function, and exercise capacity in aged mice

Age is associated with progressively impaired, metabolic, cardiac and vascular function, as well as reduced work/exercise capacity, mobility, and hence quality of life. Exercise exhibit positive effects on age-related dysfunctions and diseases. However, for a variety of reasons many aged individuals are unable to engage in regular physical activity, making the development of pharmacological treatments that mimics the beneficial effects of exercise highly desirable. Here we show that the pan-AMPK ...

Read More

Right heart exercise-training-adaptation and remodelling in endurance athletes

Long-term sports training leads to myocardial adaptations, with remodelling of the heart chambers. However, while myocardial adaptations of the left heart are well described, remodelling of the right heart and its impact on the development of arrhythmias is still debated. To conduct a systematic review on right ventricle (RV) and right atrium (RA) structural and functional changes in athletes who participate in long-term endurance training. Systematic review. A systematic literature search was conducted. ...

Read More

Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis

Instability and excessive use of the knee joint can cause osteoarthritis (OA). Reasonable exercise can enhance the stability of the knee joint and prevent and relieve the occurrence and development of OA. As a key switch for inflammation, P2X purinoceptor 7 (P2X7) has attracted much attention in studies of OA. Exercise can regulate P2X7 expression and activation. However, the role of P2X7 in exercise-based prevention and treatment of OA is unknown. We previously showed that moderate-intensity exercise ...

Read More

Exercise effects on muscle quality in older adults: a systematic review and meta-analysis

To systematically review and analyse the effects of exercise on morphological and neuromuscular muscle quality (MQ) outcomes in older adults and assess a range of possible moderators that may affect the impact of exercise on MQ outcomes. Using PRISMA guidelines, randomised controlled trials were searched in CINAHL, EMBASE, LILACS, PubMed, SciELO, Web of Science, MedNar, OpenGrey and OpenThesis databases. Eligible trials examined the effects of exercise interventions on morphological and neuromuscular ...

Read More

Timing of objectively-collected physical activity in relation to body weight and metabolic health in sedentary older people: a cross-sectional and prospective analysis

Background: Little is known about the impact of timing as opposed to frequency and intensity of daily physical activity on metabolic health. Therefore, we assessed the association between accelerometery-based daily timing of physical activity and measures of metabolic health in sedentary older people. Methods: Hourly mean physical activity derived from wrist-worn accelerometers over a 6-day period was collected at baseline and after 3 months in sedentary participants from the Active and Healthy ...

Read More

The combination of acute exercise and eye closure has a synergistic effect on alpha activity

Acute aerobic exercise increases the brain cortical activity in alpha frequency. Eye closure also increases alpha activity. However, whether the two have an additive or a synergistic effect on alpha activity has never been explored. This study observed electroencephalography (EEG) from fifteen participants seated on the cycle ergometer before, during, and after a cycling exercise with the eyes open and with them closed. Exercise intensity was set to a target heart rate (120–130 bpm), corresponding ...

Read More

Home-Based HIIT and Traditional MICT Prescriptions Improve Cardiorespiratory Fitness to a Similar Extent Within an Exercise Referral Scheme for At-Risk Individuals

Exercise referral schemes (ERS) are used to promote physical activity within primary care. Traditionally, ERS are conducted in a gym or leisure-center setting, with exercise prescriptions based on moderate-intensity continuous training (MICT). Home-based high-intensity interval training (Home-HIIT) has the potential to reduce perceived barriers to exercise, including lack of time and access to facilities, compared to traditional MICT prescription used with ERS and improve health related outcomes. ...

Read More

Impacts of essential amino acids on energy balance

Background: Obesity develops due to an imbalance in energy homeostasis, wherein energy intake exceeds energy expenditure. Increasing evidence shows that manipulations of dietary protein and their component amino acids affect the energy balance, resulting in changes in fat mass and body weight. Amino acids are not only the building blocks of proteins but also serve as signals regulating multiple biological pathways. Scope of review: We present the current available knowledge regarding the effects ...

Read More

Effects of Exercise Training on Neurotrophic Factors and Subsequent Neuroprotection in Persons with Multiple Sclerosis - A Systematic Review and Meta-Analysis

Background: Evidence indicates that exercise holds the potential to counteract neurodegeneration experienced by persons with multiple sclerosis (pwMS), which is in part believed to be mediated through increases in neurotrophic factors. There is a need to summarize the existing evidence on exercise-induced effects on neurotrophic factors alongside neuroprotection in pwMS. Aim: To (1) systematically review the evidence on acute (one session) and/or chronic (several sessions) exercise-induced changes ...

Read More

Physical Exercise Potentially Targets Epicardial Adipose Tissue to Reduce Cardiovascular Disease Risk in Patients with Metabolic Diseases: Oxidative Stress and Inflammation Emerge as Major Therapeutic Targets

Excess epicardial adiposity, within a state of obesity and metabolic syndrome, is emerging as an important risk factor for the development of cardiovascular diseases (CVDs). Accordingly, increased epicardial fat thickness (EFT) implicates the exacerbation of pathological mechanisms involving oxidative stress and inflammation within the heart, which may accelerate the development of CVDs. This explains increased interest in targeting EFT reduction to attenuate the detrimental effects of oxidative ...

Read More

Effects of Vitamin D in Post-Exercise Muscle Recovery. A Systematic Review and Meta-Analysis

Vitamin D is a key micronutrient modulating function and health in skeletal muscle. Therefore, we sought to systematically review the role of vitamin D in muscle recovery. A search in different databases (PubMed/MEDLINE, WOS, Google Scholar, and Scopus) was carried out following PRISMA® and PICOS. The search period was from inception to April 2020. Changes in post-exercise muscle damage were quantified comparing experimental group vs. placebo in each study by using number of participants, standardized ...

Read More

Irisin Is Correlated with Blood Pressure in Obstructive Sleep Apnea Patients

Background. Despite approximately 95% primary cases of hypertension, secondary hypertension seems to be common with resistant forms. Notably, obstructive sleep apnea (OSA) is known as a common cause of secondary hypertension and has a major characteristic of obesity. Irisin acts as a link between muscles and adipose tissues in obesity, playing an essential role in human blood pressure (BP) regulation. However, whether irisin is associated with secondary hypertension caused by OSA and how it takes ...

Read More

Integrated genomic and proteomic analyses identify stimulus-dependent molecular changes associated with distinct modes of skeletal muscle atrophy

Skeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored. Here, we find that, contrary to this earlier model, distinct atrophic stimuli (corticosteroids, cancer cachexia, and aging) induce largely different ...

Read More

Pattern of Adiponectin, Osteocalcin, Irisin, FGF-21, and MCP-1 According to the Body Size Phenotype: Could They Be Markers of Metabolic Health in Mexican-Mestizo Middle-Aged Women?

Variations in levels of some adipokines, myokines, osteokines, hepatokines and inflammatory cytokines contribute to abnormal glucose and lipid metabolism. The aim of this study was to determine the pattern of adiponectin, osteocalcin (OCN), irisin, FGF-21, and MCP-1 according to the body size phenotype of middle-aged women, and their associations with BMI, visceral adipose tissue (VAT), and HOMA-IR. A cross-sectional study in 265 women aged from 40 to 65 years was performed. The biochemical characteristics ...

Read More

The New Myokine Myonectin is Significantly Associated with Type 2 Diabetes in Elderly Patients

Introduction: The novel myokine myonectin is predominantly expressed in skeletal muscle and is involved in the regulation of metabolic homeostasis. A putative association between myonectin and type 2 diabetes mellitus (T2DM) has been discussed controversially in current literature. Hypothesis: We hypothesize that there is an association between myonectin and T2DM at different ages - this is addressed in the present study. Methods: We measured myonectin in 410 vascular risk patients with a mean ...

Read More

Impact of Exercise on Gut Microbiota in Obesity

Physical activity, exercise, or physical fitness are being studied as helpful nonpharmacological therapies to reduce signaling pathways related to inflammation. Studies describing changes in intestinal microbiota have stated that physical activity could increase the microbial variance and enhance the ratio of Firmicutes/Bacteroidetes, and both actions could neutralize the obesity progression and diminish body weight. The aim of this review is to provide an overview of the literature describing the ...

Read More

The Impact of Dysmetabolic Sarcopenia Among Insulin Sensitive Tissues: A Narrative Review

Sarcopenia is a common muscular affection among elderly individuals. More recently, it has been recognized as the skeletal muscle (SM) expression of the metabolic syndrome. The prevalence of sarcopenia is increasing along with visceral obesity, to which it is tightly associated. Nonetheless, it is a still underreported entity by clinicians, despite the worsening in disease burden and reduced patient quality of life. Recognition of sarcopenia is clinically challenging, and variability in study populations ...

Read More

Effects of Low Doses of L-Carnitine Tartrate and Lipid Multi-Particulate Formulated Creatine Monohydrate on Muscle Protein Synthesis in Myoblasts and Bioavailability in Humans and Rodents

The primary objective of this study was to investigate the potential synergy between low doses of L-carnitine tartrate and creatine monohydrate to induce muscle protein synthesis and anabolic pathway activation in primary human myoblasts. In addition, the effects of Lipid multi-particulates (LMP) formulation on creatine stability and bioavailability were assessed in rodents and healthy human subjects. When used individually, L-carnitine tartrate at 50 µM and creatine monohydrate at 0.5 µM ...

Read More

LRG1 is an adipokine that mediates obesity-induced hepatosteatosis and insulin resistance

Dysregulation in adipokine biosynthesis and function contributes to obesity-induced metabolic diseases. However, the identities and functions of many of the obesity-induced secretory molecules remain unknown. Here, we report the identification of leucine-rich alpha-2-glycoprotein 1 (LRG1) as an obesity-associated adipokine that exacerbates high fat diet-induced hepatosteatosis and insulin resistance. Serum levels of LRG1 were markedly elevated in obese humans and mice compared to their respective ...

Read More

Long-Term Evolution of Malnutrition and Loss of Muscle Strength after COVID-19: A Major and Neglected Component of Long COVID-19

Post-acute consequences of COVID-19, also termed long COVID, include signs and symptoms persisting for more than 12 weeks with prolonged multisystem involvement; most often, however, malnutrition is ignored. Method: The objective was to analyze persistent symptoms, nutritional status, the evolution of muscle strength and performance status (PS) at 6 months post-discharge in a cohort of COVID-19 survivors. Results: Of 549 consecutive patients hospitalized for COVID-19 between 1 March and 29 April ...

Read More

Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages

Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section’s measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber’s outskirts resembled ‘ragged’ fibers and, in these zones, ultrastructure ...

Read More

The Response of Mitochondrial Respiration and Quantity in Skeletal Muscle and Adipose Tissue to Exercise in Humans with Prediabetes

Background: Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes, but its contribution to the early stages of dysglycemia remains poorly understood. By collecting a high-resolution stage-based spectrum of dysglycemia, our study fills this gap by evaluating derangement in both the function and quantity of mitochondria. We sampled mitochondria in skeletal muscle and subcutaneous adipose tissues of subjects with progressive advancement of dysglycemia under a three-month ...

Read More

Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle

Skeletal muscles display sexually dimorphic features. Biochemically, glycolysis and fatty acid β-oxidation occur preferentially in the muscles of males and females, respectively. However, the mechanisms of the selective utilization of these fuels remains elusive. Here, we obtain transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes. Analyses of the transcriptomes unveil two genes, Pfkfb3 (phosphofructokinase-2) and Pdk4 (pyruvate ...

Read More

Muscle Contractile Properties Measured at Submaximal Electrical Amplitudes and Not at Supramaximal Amplitudes Are Associated with Repeated Sprint Performance and Fatigue Markers

Background: The present study analyzes the associations between the muscle contractile properties (MCP) measured at different neuromuscular electrical stimulation amplitudes (NMESa) and the performance or transient fatigue after a bout of repeated sprints. Methods: Seventeen physically active male subjects performed six repeated sprints of 30 m with 30 s of passive recovery. Capillary blood creatine kinase (CK) concentration, knee extension or flexion isometric peak torque, tensiomyography, and repeated ...

Read More

Effects of In Vitro Muscle Contraction on Thermogenic Protein Levels in Co‐Cultured Adipocytes

The crosstalk between the exercising muscle and the adipose tissue, mediated by myokines and metabolites, derived from both tissues during exercise has created a controversy between animal and human studies with respect to the impact of exercise on the browning process. The aim of this study was to investigate whether co-culturing of C2C12 myotubes and 3T3-L1 adipocytes under the stimuli of electrical pulse stimulation (EPS) mimicking muscle contraction can impact the expression of UCP1, PGC-1a, ...

Read More

The Role of GDF15 as a Myomitokine

Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can ...

Read More

Effects of Facial Isometric Exercise on Antioxidant Capacity

Background: Facial isometric exercise is a static contraction of facial muscles without any visible movement in the angle of the joints. To examine the effects of facial isometric exercise on subjective stress and oxidative stress/antioxidant capacity. Methods: In this study, we included 13 participants (6 males, 7 females; average age, 44.8 ± 19.6 years; age range: 20 - 74 years) who were exposed to constant temperature and humidity in a room. Fifteen minutes after entering the room, the ...

Read More

Positive effect of combined exercise on adipokines levels and pubertal signs in overweight and obese girls with central precocious puberty

Background: The prevalence of precocious puberty is increasing. Obesity has been demonstrated to be associated with changes in the adipokine profile and incidence of early puberty in girls. This study assessed the pubertal signs, the levels of adiponectin, resistin, and tumor necrosis factor-alpha (TNF-α) after 12 weeks of combined exercise and 4 weeks of detraining in overweight and obese girls with precocious puberty. Methods: Thirty overweight and obese girls (aged 7–9) ...

Read More

The acute effect of fasted exercise on energy intake, energy expenditure, subjective hunger and gastrointestinal hormone release compared to fed exercise in healthy individuals: a systematic review and network meta-analysis

ObjectiveTo determine the acute effect of fasted and fed exercise on energy intake, energy expenditure, subjective hunger and gastrointestinal hormone release. Methods: CENTRAL, Embase, MEDLINE, PsycInfo, PubMed, Scopus and Web of Science databases were searched to identify randomised, crossover studies in healthy individuals that compared the following interventions: (i) fasted exercise with a standardised post-exercise meal [FastEx + Meal], (ii) fasted exercise without a standardised ...

Read More

Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues

Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological ...

Read More

Could Irisin Levels be Affected by Physical Activity in Patients with Schizophrenia?

Objective: The aim of this study was to explore the effect of physical activity and metabolic parameters on irisin levels in patients with schizophrenia and healthy controls. Methods: Ninety-six patients with schizophrenia and 63 healthy controls comprised the study population. The participants were separated into three groups: inactive, low activity, and sufficiently active according to International Physical Activity Questionnaire short form (IPAQ-SF). We measured irisin levels using Enzyme linked ...

Read More

Metabolic and inflammatory health in SARS-CoV-2 and the potential role for habitual exercise in reducing disease severity

Introduction: The rapid emergence and spread of SARS-CoV-2 in late 2019 has infected millions of people worldwide with significant morbidity and mortality with various responses from health authorities to limit the spread of the virus. Although population-wide inoculation is preferred, currently, there is large variation and disparity in the acquisition, development, and deployment of vaccination programs in many countries. Even with availability of a vaccine, achieving herd immunity does not guarantee ...

Read More

Exercise Intervention for Academic Achievement Among Children: A Randomized Controlled Trial

OBJECTIVES: Physical inactivity is an important health concern worldwide. In this study, we examined the effects of an exercise intervention on children’s academic achievement, cognitive function, physical fitness, and other health-related outcomes. METHODS: We conducted a population-based cluster randomized controlled trial among 2301 fourth-grade students from 10 of 11 public primary schools in 1 district of Ulaanbaatar between February and December 2018. Schools were allocated to an intervention ...

Read More

Translation and validation of the Persian version of Godin Leisure-Time Exercise Questionnaire in patients with multiple sclerosis

Objective: The purpose of this study is to translate, culturally adapt and evaluate the validity and reliability of the Persian (Farsi) version of GLTEQ in patients with multiple sclerosis. Methods: This study had three phases, including translation of the questionnaire into Persian and making cultural adaptation, evaluation of pre-final version of questionnaire’s comprehensibility in a pilot study, and investigation of reliability and validity of the final version of the translated questionnaire. ...

Read More

Exercise improves vascular health: Role of mitochondria

Vascular mitochondria constantly integrate signals from environment and respond accordingly to match vascular function to metabolic requirements of the organ tissues, while mitochondrial dysfunction contributes to vascular aging and pathologies such as atherosclerosis, stenosis, and hypertension. As an effective lifestyle intervention, exercise induces extensive mitochondrial adaptations through vascular mechanical stress and the increased production and release of reactive oxygen species and nitric ...

Read More

Prehabilitative Resistance Exercise Reduces Neuroinflammation and Improves Mitochondrial Health in Aged Mice with Perioperative Neurocognitive Disorders

Background: Perioperative neurocognitive dysfunction remains a significant problem in vulnerable groups such as the elderly. While experimental data regarding its possible pathogenic mechanisms accumulates, therapeutic options for this disorder are limited. In this study, we evaluated the neuroprotective effect of a period of preconditioning resistant training on aged mice following abdominal surgery. Further, we examined the underlying mechanism from the perspective of neuroinflammatory state and ...

Read More

Exercise Ameliorates Diabetic Kidney Disease in Type 2 Diabetic Fatty Rats

Lifestyle improvement, including through exercise, has been recognized as an important mode of therapy for the suppression of diabetic kidney disease (DKD). However, the detailed molecular mechanisms by which exercise exerts beneficial effects in the suppression of DKD have not yet been fully elucidated. In this study, we investigate the effects of treadmill exercise training (TET) for 8 weeks (13 m/min, 30 min/day, 5 days/week) on kidney injuries of type 2 diabetic male rats with obesity (Wistar ...

Read More

Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle

Cisplatin has been reported to cause side effects such as muscle wasting in humans and rodents. The physiological mechanisms involved in preventing muscle wasting, such as the regulation of AKT, PGC1-α, and autophagy-related factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types of exercise and in various skeletal muscle types. Eight-week-old male Wistar rats (n = 34) were assigned to one of four groups: control (CON, n = 6), cisplatin injection (1 mg/kg) without exercise ...

Read More

Acid Sphingomyelinase Controls Early Phases of Skeletal Muscle Regeneration by Shaping the Macrophage Phenotype

Skeletal muscle regeneration is a complex process involving crosstalk between immune cells and myogenic precursor cells, i.e., satellite cells. In this scenario, macrophage recruitment in damaged muscles is a mandatory step for tissue repair since pro-inflammatory M1 macrophages promote the activation of satellite cells, stimulating their proliferation and then, after switching into anti-inflammatory M2 macrophages, they prompt satellite cells’ differentiation into myotubes and resolve inflammation. ...

Read More

Exercise training and probiotic supplementation effects on skeletal muscle apoptosis prevention in type-Ι diabetic rats

Aims: Hyperglycemia occurring in the diabetic condition can cause apoptosis via the mitochondrial pathway with higher pro-apoptotic protein expression. Probiotics are viable microorganisms that have anti-diabetic and antioxidant effects. Also, exercise may affect the signaling pathways of skeletal muscle apoptosis. This study examined the aerobic exercise training and probiotic supplementation effects on some apoptotic indices of the soleus muscle in diabetic rats-induced by streptozotocin. Main ...

Read More

The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling

Emerging evidence suggests a significant functional role of adipose tissue in maintaining whole-body metabolic health. It is well established that obesity leads to compositional and morphological changes in adipose tissue that can contribute to the development of cardiometabolic disorders. Thus, the function and size of adipocytes as well as perfusion and inflammation can significantly impact health outcomes independent of body mass index. Lifestyle interventions such as exercise can improve metabolic ...

Read More

Exercise Training: The Holistic Approach in Cardiovascular Prevention

Nowadays, there are robust clinical and pathophysiological evidence supporting the beneficial effects of physical activity on cardiovascular (CV) system. Thus, the physical activity is considered a key strategy for CV prevention. In fact, exercise training exerts favourable effects on all risk factors for CV diseases (i.e. essential hypertension, type 2 diabetes mellitus, hypercholesterolemia, obesity, metabolic syndrome, etc…). In addition, all training modalities such as the aerobic (continuous ...

Read More

Profiling of ob/ob mice skeletal muscle exosome-like vesicles demonstrates combined action of miRNAs, proteins and lipids to modulate lipid homeostasis in recipient cells

We have determined the lipid, protein and miRNA composition of skeletal muscle (SkM)-released extracellular vesicles (ELVs) from Ob/ob (OB) vs wild-type (WT) mice. The results showed that atrophic insulin-resistant OB-SkM released less ELVs than WT-SkM, highlighted by a RAB35 decrease and an increase in intramuscular cholesterol content. Proteomic analyses of OB-ELVs revealed a group of 37 proteins functionally connected, involved in lipid oxidation and with catalytic activities. OB-ELVs had modified ...

Read More

Mitochondrial-nuclear cross-talk in the human brain is modulated by cell type and perturbed in neurodegenerative disease

Mitochondrial dysfunction contributes to the pathogenesis of many neurodegenerative diseases. The mitochondrial genome encodes core respiratory chain proteins, but the vast majority of mitochondrial proteins are nuclear-encoded, making interactions between the two genomes vital for cell function. Here, we examine these relationships by comparing mitochondrial and nuclear gene expression across different regions of the human brain in healthy and disease cohorts. We find strong regional patterns that ...

Read More

Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point

Neural tissue is one of the main oxygen consumers in the mammalian body, and a plentitude of metabolic as well as signaling processes within the brain is accompanied by the generation of reactive oxygen (ROS) and nitrogen (RNS) species. Besides the important signaling roles, both ROS and RNS can damage/modify the self-derived cellular components thus promoting neuroinflammation and oxidative stress. While previously, the latter processes were thought to progress linearly with age, newer data point ...

Read More

Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition

Cancer incidence increases with age and is a leading cause of death. Caloric restriction (CR) confers benefits on health and survival and delays cancer. However, due to CR’s stringency, dietary alternatives offering the same cancer protection have become increasingly attractive. Short cycles of a plant-based diet designed to mimic fasting (FMD) are protective against tumorigenesis without the chronic restriction of calories. Yet, it is unclear whether the fasting time, level of dietary restriction, ...

Read More

Comparative Characteristics of Sensorimotor Reactions of Highly Qualified Athletes with Different Types of Heart Rate Regulation

The purpose of the study was a comparative analysis of sensorimotor reactions in highly trained athletes with different types of heart rate regulation. Materials and methods. 202 highly trained male athletes aged 22.6±2.8 years, who are engaged in acyclic sports – martial arts (karate, taekwondo, kickboxing, boxing, freestyle wrestling, Greco-Roman wrestling, judo, sambo) and games (water polo, soccer) were examined. The experience in sports was 10.3±3.1 years. All studies were ...

Read More

Interpreting "anti-inflammatory" cytokine responses to exercise: Focus on interleukin-10

Circulating concentrations of canonically pro- and anti-inflammatory cytokines are commonly measured when evaluating the anti-inflammatory effects of exercise. An important caveat to interpreting systemic cytokine concentrations as evidence for the anti-inflammatory effects of exercise is the observed dissociation between circulating cytokine concentrations and cytokine function at the tissue/cellular level. The dichotomization of cytokines as pro- or anti-inflammatory also overlooks the context-dependence ...

Read More

Enhanced pro-BDNF-p75NTR pathway activity in denervated skeletal muscle

Aims: Brain derived neurotrophic factor (BDNF) and the related receptors TrkB and p75NTR are expressed in skeletal muscle, yet their functions remain to be fully understood. Skeletal muscle denervation, which occurs in spinal injury, peripheral neuropathies, and aging, negatively affects muscle mass and function. In this study, we wanted to understand the role of BDNF, TrkB, and p75NTR in denervation-induced adverse effects on skeletal muscle. Main methods: Mice with unilateral sciatic denervation ...

Read More

Skeletal muscle energy metabolism in obesity

Comparing energy metabolism in human skeletal muscle and primary skeletal muscle cells in obesity, while focusing on glucose and fatty acid metabolism, shows many common changes. Insulin-mediated glucose uptake in skeletal muscle and primary myotubes is decreased by obesity, whereas differences in basal glucose metabolism are inconsistent among studies. With respect to fatty acid metabolism, there is an increased uptake and storage of fatty acids and a reduced complete lipolysis, suggesting alterations ...

Read More

Myokine Expression and Tumor-suppressive Effect of Serum following 12 Weeks of Exercise in Prostate Cancer Patients on ADT

Purpose: Although several mechanisms have been proposed for the tumor-suppressive effect of exercise, little attention has been given to myokines even though skeletal muscle is heavily recruited during exercise resulting in myokine surges. We measured resting serum myokine levels before and after an exercise-based intervention and the effect of this serum on prostate cancer cell growth. Methods: Ten prostate cancer patients undertaking androgen deprivation therapy (ADT) (age 73.3 ± 5.6 yrs) ...

Read More

Effects of the exercise-inducible myokine irisin on proliferation and malignant properties of ovarian cancer cells through the HIF-1 α signaling pathway

Background Exercise has been shown to be associated with reduced risk and improving outcomes of several types of cancers. Irisin −a novel exercise-related myokine- has been proposed to exert beneficial effects in metabolic disorders including cancer. No previous studies have investigated whether irisin may regulate malignant characteristics of ovarian cell lines. Methods In the present study, we aimed to explore the effect of irisin on viability and proliferation of ovarian cancer cells which ...

Read More

Epigenetic rewiring of skeletal muscle enhancers after exercise training supports a role in whole-body function and human health

Objectives: Regular physical exercise improves health by reducing the risk of a plethora of chronic disorders. We hypothesized that endurance exercise training remodels the activity of gene enhancers in skeletal muscle and that this remodeling contributes to the beneficial effects of exercise on human health. Methods and results: By studying changes in histone modifications, we mapped the genome-wide positions and activities of enhancers in skeletal muscle biopsies collected from young sedentary ...

Read More

Effects of Algorithmic Music on the Cardiovascular Neural Control

Music influences many physiological parameters, including some cardiovascular (CV) control indices. The complexity and heterogeneity of musical stimuli, the integrated response within the brain and the limited availability of quantitative methods for non-invasive assessment of the autonomic function are the main reasons for the scarcity of studies about the impact of music on CV control. This study aims to investigate the effects of listening to algorithmic music on the CV regulation of healthy subjects ...

Read More

Vitamin D and Muscle Health: A Systematic Review and Meta-analysis of Randomized Placebo-Controlled Trials

The objective of this study was to investigate the effects of vitamin D supplementation versus placebo on muscle health. For this systematic review and trial-level meta-analysis of placebo-controlled trials, a systematic search of randomized controlled trials published until October 2020 was performed in Medline, Embase, and Google Scholar. We included studies in humans (except athletes) on supplementation with vitamin D2 or D3 versus placebo, regardless of administration form (daily, bolus, and ...

Read More

Ulk1, Not Ulk2, Is Required for Exercise Training-Induced Improvement of Insulin Response in Skeletal Muscle

Unc51 like autophagy activating kinase 1 (Ulk1), the primary autophagy regulator, has been linked to metabolic adaptation in skeletal muscle to exercise training. Here we compared the roles of Ulk1 and homologous Ulk2 in skeletal muscle insulin action following exercise training to gain more mechanistic insights. Inducible, skeletal muscle-specific Ulk1 knock-out (Ulk1-iMKO) mice and global Ulk2 knock-out (Ulk2-/-) mice were subjected to voluntary wheel running for 6 weeks followed by assessment ...

Read More

SESN2 protects against denervated muscle atrophy through unfolded protein response and mitophagy

Denervation of skeletal muscles results in a rapid and programmed loss of muscle size and performance, termed muscle atrophy, which leads to a poor prognosis of clinical nerve repair. Previous researches considered this process a result of multiple factors, such as protein homeostasis disorder, mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and apoptosis, while their intrinsic association remains to be explored. In this study, Sestrin2 (SESN2), a stress-inducible protein, was shown ...

Read More

Stimulation of Non-canonical NF-κB Through Lymphotoxin-β-Receptor Impairs Myogenic Differentiation and Regeneration of Skeletal Muscle

Myogenic differentiation, muscle stem cell functionality, and regeneration of skeletal muscle are cellular processes under tight control of various signaling pathways. Here, we investigated the role of non-canonical NF-κB signaling in myogenic differentiation, muscle stem cell functionality, and regeneration of skeletal muscle. We stimulated non-canonical NF-κB signaling with an agonistically acting antibody of the lymphotoxin beta receptor (LTβR). Interestingly, we found that stimulation ...

Read More

Muscle-derived exophers promote reproductive fitness

Organismal functionality and reproduction depend on metabolic rewiring and balanced energy resources. However, the crosstalk between organismal homeostasis and fecundity and the associated paracrine signaling mechanisms are still poorly understood. Using Caenorhabditis elegans, we discovered that large extracellular vesicles (known as exophers) previously found to remove damaged subcellular elements in neurons and cardiomyocytes are released by body wall muscles (BWM) to support embryonic growth. ...

Read More

‘Fat but powerful’ paradox: association of muscle power and adiposity markers with all-cause mortality in older adults from the EXERNET multicentre study

Objectives: To assess the influence of muscle power and adiposity on all-cause mortality risk and to evaluate the ‘fat but powerful’ (F+P) (or ‘fat but fit’) paradox in older adults. Methods: A total of 2563 older adults (65‒91 years old) from the EXERNET multicentre study were included. Adiposity (body mass index (BMI), waist circumference, body fat percentage (BF%) and fat index), allometric and relative power (sit-to-stand muscle power test) and various covariates (age, ...

Read More

Dysosmobacter welbionis is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice

Objective: To investigate the abundance and the prevalence of Dysosmobacter welbionis J115T, a novel butyrate-producing bacterium isolated from the human gut both in the general population and in subjects with metabolic syndrome. To study the impact of this bacterium on host metabolism using diet-induced obese and diabetic mice. Design We analysed the presence and abundance of the bacterium in 11 984 subjects using four human cohorts (ie, Human Microbiome Project, American Gut Project, Flemish ...

Read More

Energetic cost of walking and Brain Atrophy in Mid-to-Late Life

Background: Higher energetic costs for mobility are associated with declining gait speed and slow gait is linked to cognitive decline and Alzheimer’s disease. However, the physiological underpinnings of gait and brain health have not been well explored. We examined the associations of the energetic cost of walking with brain volume in cognitively unimpaired adults from the Baltimore Longitudinal Study of Aging. Methods: We used brain MRI data from 850 participants (mean baseline age 66.3±14.5 ...

Read More

A single bout of exercise improves vascular insulin sensitivity in adults with obesity

Objective: This crossover study explored the impact of a single bout of exercise on insulin-stimulated responses in conduit arteries and capillaries. Methods: Twelve sedentary adults (49.5 [7.8] years; maximal oxygen consumption [VO2max]: 23.7 [5.4] mL/kg/min) with obesity (BMI 34.5 [4.3] kg/m2) completed a control and exercise bout (70% VO2max to expend 400 kcal). Sixteen hours later, participants underwent a 2-hour euglycemic-hyperinsulinemic clamp (90 mg/dL; 40 mU/m2/min) to determine vascular ...

Read More

Arcuate Nucleus-Dependent Regulation of Metabolism—Pathways to Obesity and Diabetes Mellitus

The central nervous system (CNS) receives information from afferent neurons, circulating hormones, and absorbed nutrients and integrates this information to orchestrate the actions of the neuroendocrine and autonomic nervous systems in maintaining systemic metabolic homeostasis. Particularly the arcuate nucleus of the hypothalamus (ARC) is of pivotal importance for primary sensing of adiposity signals, such as leptin and insulin, and circulating nutrients, such as glucose. Importantly, energy state–sensing ...

Read More

Upregulation of Thioesterase Superfamily Member 2 in Skeletal Muscle Promotes Hepatic Steatosis and Insulin Resistance

Background: Thioesterase superfamily member 2 (Them2) is highly expressed in liver and oxidative tissues, where it hydrolyzes long chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/-) are protected against diet-induced obesity, hepatic steatosis and insulin resistance, liver-specific Them2-/- mice remain susceptible. The aim of this study was to test whether Them2 activity in extrahepatic oxidative tissues is a primary determinant of hepatic steatosis ...

Read More

AgRP neurons: Regulators of feeding, energy expenditure, and behavior

Neurons in the hypothalamic arcuate nucleus (ARC) that express agouti-related peptide (AgRP) govern a critical aspect of survival: the drive to eat. Equally important to survival is the timing at which food is consumed—seeking or eating food to alleviate hunger in the face of a more pressing threat, like the risk of predation, is clearly maladaptive. To ensure optimal prioritization of behaviors within a given environment, therefore, AgRP neurons must integrate signals of internal need states ...

Read More

Multiple Leptin Signalling Pathways in the Control of Metabolism and Fertility: A Means to Different Ends?

The adipocyte-derived ‘satiety promoting’ hormone, leptin, has been identified as a key central regulator of body weight and fertility, such that its absence leads to obesity and infertility. Plasma leptin levels reflect body adiposity, and therefore act as an ‘adipostat’, whereby low leptin levels reflect a state of low body adiposity (under-nutrition/starvation) and elevated leptin levels reflect a state of high body adiposity (over-nutrition/obesity). While genetic leptin ...

Read More

Oxytocin and Food Intake Control: Neural, Behavioral, and Signaling Mechanisms

The neuropeptide oxytocin is produced in the paraventricular hypothalamic nucleus and the supraoptic nucleus of the hypothalamus. In addition to its extensively studied influence on social behavior and reproductive function, central oxytocin signaling potently reduces food intake in both humans and animal models and has potential therapeutic use for obesity treatment. In this review, we highlight rodent model research that illuminates various neural, behavioral, and signaling mechanisms through which ...

Read More

Energy deficiency impairs resistance training gains in lean mass but not strength: A meta-analysis and meta-regression

Short-term energy deficits impair anabolic hormones and muscle protein synthesis. However, the effects of prolonged energy deficits on resistance training (RT) outcomes remain unexplored. Thus, we conducted a systematic review of PubMed and SportDiscus for randomized controlled trials performing RT in an energy deficit (RT+ED) for ≥3 weeks. We first divided the literature into studies with a parallel control group without an energy deficit (RT+CON; Analysis A) and studies without RT+CON (Analysis ...

Read More

Acute Effects of High Doses of Caffeine on Bar Velocity during the Bench Press Throw in Athletes Habituated to Caffeine: A Randomized, Double-Blind and Crossover Study

Chronic intake of caffeine may produce a reduction in the potential performance benefits obtained with the acute intake of this substance. For this reason, athletes habituated to caffeine often use high doses of caffeine (≥9 mg/kg) to overcome tolerance to caffeine ergogenicity due to chronic intake. The main objective of the current investigation was to evaluate the effects of high caffeine doses on bar velocity during an explosive bench press throw in athletes habituated to caffeine. Twelve ...

Read More

Effect of dietary nitrate on human muscle power: a systematic review and individual participant data meta-analysis

Background: Previous narrative reviews have concluded that dietary nitrate (NO3−) improves maximal neuromuscular power in humans. This conclusion, however, was based on a limited number of studies, and no attempt has been made to quantify the exact magnitude of this beneficial effect. Such information would help ensure adequate statistical power in future studies and could help place the effects of dietary NO3− on various aspects of exercise performance (i.e., endurance vs. strength vs. ...

Read More

New Recommendations for T2D Management: Beneficial Impact of Exerkines on Pancreatic β-Cells Function and Glucose Homeostasis in Skeletal Muscle

Exercise is considered as one of the main therapeutic strategies to improve glycemic regulation in diabetic patients. Current recommendation for diabetes management is a 3 to 5 times a week 150 min of moderate-to-moderate intensive physical activity.However, these could be refined thanks to recent studies. Furthermore, favorable effect generated by exerkines from the better understanding of mechanism involved in the exercise-associated, would allow the identification of future innovative molecules ...

Read More

Crosstalk between Metabolic Disorders and Immune Cells

Metabolic syndrome results from multiple risk factors that arise from insulin resistance induced by abnormal fat deposition. Chronic inflammation owing to obesity primarily results from the recruitment of pro-inflammatory M1 macrophages into the adipose tissue stroma, as the adipocytes within become hypertrophied. During obesity-induced inflammation in adipose tissue, pro-inflammatory cytokines are produced by macrophages and recruit further pro-inflammatory immune cells into the adipose tissue to ...

Read More

Exercise tolls the bell for key mediators of low-grade inflammation in dysmetabolic conditions

Metabolic conditions share a common low-grade inflammatory milieu, which represents a key-factor for their ignition and maintenance. Exercise is instrumental for warranting systemic cardio-metabolic balance, owing to its regulatory effect on inflammation. This review explores the effect of physical activity in the modulation of sub-inflammatory framework characterizing dysmetabolic conditions. Regular exercise suppresses plasma levels of TNFα, IL-1β, FFAs and MCP-1, in dysmetabolic subjects. ...

Read More

Clock proteins and training modify exercise capacity in a daytime-dependent manner

Exercise and circadian biology are closely intertwined with physiology and metabolism, yet the functional interaction between circadian clocks and exercise capacity is only partially characterized. Here, we tested different clock mutant mouse models to examine the effect of the circadian clock and clock proteins, namely PERIODs and BMAL1, on exercise capacity. We found that daytime variance in endurance exercise capacity is circadian clock controlled. Unlike wild-type mice, which outperform in the ...

Read More

Muscle-Bone Crosstalk in Chronic Obstructive Pulmonary Disease

Sarcopenia and osteoporosis are common musculoskeletal comorbidities of chronic obstructive pulmonary disease (COPD) that seriously affect the quality of life and prognosis of the patient. In addition to spatially mechanical interactions, muscle and bone can also serve as endocrine organs by producing myokines and osteokines to regulate muscle and bone functions, respectively. As positive and negative regulators of skeletal muscles, the myokines irisin and myostatin not only promote/inhibit the differentiation ...

Read More

Fetuin-B, a potential link of liver-adipose tissue cross talk during diet-induced weight loss–weight maintenance

Background/objectives: Numerous hepatokines are involved in inter-organ cross talk regulating tissue-specific insulin sensitivity. Adipose tissue lipolysis represents a crucial element of adipose insulin sensitivity and is substantially involved in long-term body weight regulation after dietary weight loss. Thus, we aimed to analyze the impact of the hepatokine Fetuin-B in the context of weight loss induced short- and long-term modulation of adipose insulin sensitivity. Subjects/methods: 143 subjects ...

Read More

Insulin Resistance in Skeletal Muscle Selectively Protects the Heart in Response to Metabolic Stress

Obesity and type 2 diabetes mellitus (T2DM) are the leading causes of cardiovascular morbidity and mortality. Although insulin resistance is believed to underlie these disorders, anecdotal evidence contradicts this common belief. Accordingly, obese patients with cardiovascular disease have better prognoses relative to leaner patients with the same diagnoses, whereas treatment of T2DM patients with thiazolidinedione, one of the popular insulin-sensitizer drugs, significantly increases the risk of ...

Read More

Hepatic Steatosis Contributes to the Development of Muscle Atrophy via Inter-Organ Crosstalk

Individuals with hepatic steatosis often display several metabolic abnormalities including insulin resistance and muscle atrophy. Previously, we found that hepatic steatosis results in an altered hepatokine secretion profile, thereby inducing skeletal muscle insulin resistance via inter-organ crosstalk. In this study, we aimed to investigate whether the altered secretion profile in the state of hepatic steatosis also induces skeletal muscle atrophy via effects on muscle protein turnover. To investigate ...

Read More

Prenatal exercise in fetal development: a placental perspective

Maternal obesity (MO) and gestational diabetes mellitus (GDM) are common in western societies, which impair fetal development and predispose offspring to metabolic dysfunction. Placenta is the organ linking the mother to her fetus, and MO suppresses the development of vascular system and expression of nutrient transporters in placenta, thereby affecting fetal development. For maintaining its proper physiological function, placenta is energy demanding, which is met through extensive oxidative phosphorylation. ...

Read More

Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity

Endurance exercise promotes skeletal muscle vascularization, oxidative metabolism, fiber-type switching, and neuromuscular junction integrity. Importantly, the metabolic and contractile properties of the muscle fiber must be coupled to the identity of the innervating motor neuron (MN). Here, we show that muscle-derived neurturin (NRTN) acts on muscle fibers and MNs to couple their characteristics. Using a muscle-specific NRTN transgenic mouse (HSA-NRTN) and RNA sequencing of MN somas, we observed ...

Read More

Complexity of skeletal muscle degeneration: Multi-systems pathophysiology and organ crosstalk in dystrophinopathy

Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a ...

Read More

Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities

Skeletal muscle adaptations to resistance and endurance training include increased ribosome and mitochondrial biogenesis, respectively. Such adaptations are believed to contribute to the notable increases in hypertrophy and aerobic capacity observed with each exercise mode. Data from multiple studies suggest the existence of a competition between ribosome and mitochondrial biogenesis, in which the first adaptation is prioritized with resistance training while the latter is prioritized with endurance ...

Read More

Mechanisms of inter-organ crosstalk mediated by tryptophan metabolism

Physical exercise and nutrition balance the “energy in-energy out” equilibrium that keeps the system at a dynamic homeostasis, energetically speaking. However, this is a simplistic vision of a dynamic system that is in a constant fine-tuning of all of its parts. Physical exercise benefits for metabolic health go beyond its “energy out” role: it modulates whole body metabolism, insulin sensitivity and induces favorable remodeling in other tissues through secreted factors. Old ...

Read More

Mitochondria-cytokine crosstalk following skeletal muscle injury and disuse: a mini-review

Skeletal muscle mitochondria are highly adaptable, highly dynamic organelles that maintain the functional integrity of the muscle fiber by providing ATP for contraction and cellular homeostasis (e.g., Na+/K+ ATPase). Emerging as early modulators of inflammation, mitochondria sense and respond to cellular stress. Mitochondria communicate with the environment, in part, by release of physical signals called mitochondrial-derived damage-associated molecular patterns (mito-DAMPs) and deviation from ...

Read More

Identification of Sclerostin as a Putative New Myokine Involved in the Muscle-to-Bone Crosstalk

Bone and muscle have been recognized as endocrine organs since they produce and secrete “hormone-like factors” that can mutually influence each other and other tissues, giving rise to a “bone–muscle crosstalk”. In our study, we made use of myogenic (C2C12 cells) and osteogenic (2T3 cells) cell lines to investigate the effects of muscle cell-produced factors on the maturation process of osteoblasts. We found that the myogenic medium has inhibitory effects on bone cell ...

Read More

2,6-Dimethoxy-1,4-benzoquinone increases skeletal muscle mass and performance by regulating AKT/mTOR signaling and mitochondrial function

Background: 2,6-Dimethoxy-1,4-benzoquinone (DMBQ), a natural phytochemical present in fermented wheat germ, has been reported to exert anti-cancer, anti-inflammatory, and anti-adipogenic effects. However, the effect of DMBQ on muscle hypertrophy and myoblast differentiation has not been elucidated. Purpose: We investigated the effect of DMBQ on skeletal muscle mass and muscle function and then determined the possible mechanism of DMBQ. Methods: To examine myogenic differentiation and hypertrophy, ...

Read More

Circulating small extracellular vesicles increase after an acute bout of moderate-intensity exercise in pregnant compared to non-pregnant women

The physiological and molecular mechanisms linking prenatal physical activity and improvements in maternal–fetal health are unknown. It is hypothesized that small extracellular vesicles (EVs, ~ 10–120 nm) are involved in tissue cross-talk during exercise. We aimed to characterize the circulating small EV profile of pregnant versus non-pregnant women after an acute bout of moderate-intensity exercise. Pregnant (N = 10) and non-pregnant control (N = 9) ...

Read More

Endurance training alleviates MCP-1 and TERRA accumulation at old age in human skeletal muscle

Both oxidative stress and telomere transcription are up-regulated by acute endurance exercise in human skeletal muscle. Whether and how life-long exercise training influences the antioxidant system response at transcriptional level and TERRA expression is unknown, especially during aging. Response to acute endurance exercise was investigated in muscle biopsies of 3 male subjects after 45 min of cycling. MCP-1 and SOD1 mRNA levels increased up to, 15-fold and 63%, respectively, after the cycling session ...

Read More

Functional significance of gain-of-function H19 lncRNA in skeletal muscle differentiation and anti-obesity effects

Background: Exercise training is well established as the most effective way to enhance muscle performance and muscle building. The composition of skeletal muscle fiber type affects systemic energy expenditures, and perturbations in metabolic homeostasis contribute to the onset of obesity and other metabolic dysfunctions. Long noncoding RNAs (lncRNAs) have been demonstrated to play critical roles in diverse cellular processes and diseases, including human cancers; however, the functional importance ...

Read More

How does the skeletal muscle communicate with the brain in health and disease?

Endocrine mechanisms have been largely associated with metabolic control and tissue cross talk in mammals. Classically, myokines comprise a class of signaling proteins released in the bloodstream by the skeletal muscle, which mediate physiological and metabolic responses in several tissues, including the brain. Recent exciting evidence suggests that myokines (e.g. cathepsin B, FNDC5/irisin, interleukin-6) act to control brain functions, including learning, memory, and mood, and may mediate the beneficial ...

Read More

Mitophagy Directs Muscle-Adipose Crosstalk to Alleviate Dietary Obesity

The quality of mitochondria in skeletal muscle is essential for maintaining metabolic homeostasis during adaptive stress responses. However, the precise control mechanism of muscle mitochondrial quality and its physiological impacts remain unclear. Here, we demonstrate that FUNDC1, a mediator of mitophagy, plays a critical role in controlling muscle mitochondrial quality as well as metabolic homeostasis. Skeletal-muscle-specific ablation of FUNDC1 in mice resulted in LC3-mediated ...

Read More

Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases

Increasing evidence shows that endothelial cells play critical roles in maintaining vascular homeostasis, regulating vascular tone, inhibiting inflammatory response, suppressing lipid leakage, and preventing thrombosis. The damage or injury of endothelial cells induced by physical, chemical, and biological risk factors is a leading contributor to the development of mortal cardiovascular and cerebrovascular diseases. However, the underlying mechanism of endothelial injury remains to be elucidated. ...

Read More

Acute Impacts of Different Types of Exercise on Circulating α-Klotho Protein Levels

Introduction: Elevated plasma α-klotho (αKl) protects against several ageing phenotypes and has been proposed as a biomarker of a good prognosis for different diseases. The beneficial health effects of elevated plasma levels of soluble αKl (SαKl) have been likened to the positive effects of exercise on ageing and chronic disease progression. It has also been established that molecular responses and adaptations differ according to exercise dose. The aim of this study is to ...

Read More

Postnatal exercise protects offspring from high-fat diet-induced reductions in subcutaneous adipocyte beiging in C57Bl6/J Mice

Maternal low-protein and postnatal high-fat (HF) diets program offspring obesity and type 2 diabetes mellitus (T2DM) risk by epigenetically reducing beige adipocytes (BA) via increased G9a protein expression (Histone3 Lysine9 dimethyl transferase), an inhibitor of the BA marker fibroblast growth factor 21 (FGF21). Conversely, offspring exercise reduces fat mass and white adipocytes, but the mechanisms are not yet understood. This work investigated whether exercise reduces offspring obesity and T2DM ...

Read More

Roles of Skeletal Muscle-Derived Exosomes in Organ Metabolic and Immunological Communication

Skeletal muscles secrete various factors, such as proteins/peptides, nucleotides, and metabolites, which are referred to as myokines. Many of these factors are transported into extracellular bodily fluids in a free or protein-bound form. Furthermore, several secretory factors have been shown to be wrapped up by small vesicles, particularly exosomes, secreted into circulation, and subsequently regulate recipient cells. Thus, exosome contents can be recognized as myokines. In recipient cells, proteins, ...

Read More

Potential Improvement in Rehabilitation Quality of 2019 Novel Coronavirus by Isometric Training System; Is There “Muscle-Lung Cross-Talk”?

  The novel Coronavirus Disease 2019 (COVID-19) crisis is now present in more than 200 countries. It started in December 2019 and has, so far, led to more than 149, 470,968 cases, 3,152,121 deaths, and 127,133,013 survivors recovered by 28 April 2021. COVID-19 has a high morbidity, and mortality of 2%, on average, whereas most people are treated after a period of time. Some people who recover from COVID-19 are left with 20 to 30% decreased lung function. In this context, exercise focused on ...

Read More

Inter-organ cross-talk in metabolic syndrome

Maintenance of systemic homeostasis and the response to nutritional and environmental challenges require the coordination of multiple organs and tissues. To respond to various metabolic demands, higher organisms have developed a system of inter-organ communication through which one tissue can affect metabolic pathways in a distant tissue. Dysregulation of these lines of communication contributes to human pathologies, including obesity, diabetes, liver disease and atherosclerosis. In recent ...

Read More

The wonder exerkines—novel insights: a critical state-of-the-art review

Several benefits can be acquired through physical exercise. Different classes of biomolecules are responsible for the cross-talk between distant organs. The secretome of skeletal muscles, and more widely the field of organokines, is ever-expanding. “Exerkine” has emerged as the umbrella term covering any humoral factors secreted into circulation by tissues in response to exercise. This review aims at describing the most interesting exerkines discovered in the last 3 years, which are paving ...

Read More

Muscle-tendon cross talk during muscle wasting

In organisms from flies to mammals, the initial formation of a functional tendon is completely dependent on chemical signals from muscles (myokines). However, how myokines affect the maturation, maintenance, and regeneration of tendons as a function of age is completely unstudied. Here we discuss the role of four myokines—fibroblast growth factors (FGF), myostatin, the secreted protein acidic and rich in cysteine (SPARC) miR-29—in tendon development and hypothesize a role for these factors ...

Read More

Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy

Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a ...

Read More

Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation

Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, ...

Read More

Cilia, Centrosomes and Skeletal Muscle

Primary cilia are non-motile, cell cycle-associated organelles that can be found on most vertebrate cell types. Comprised of microtubule bundles organised into an axoneme and anchored by a mature centriole or basal body, primary cilia are dynamic signalling platforms that are intimately involved in cellular responses to their extracellular milieu. Defects in ciliogenesis or dysfunction in cilia signalling underlie a host of developmental disorders collectively referred to as ciliopathies, reinforcing ...

Read More

Management of Oxidative Stress: Crosstalk Between Brown/Beige Adipose Tissues and Skeletal Muscles

Exercise plays an important role in the physiology, often depending on its intensity, duration, and frequency. It increases the production of reactive oxygen species (ROS). Meanwhile, it also increases antioxidant enzymes involved in the oxidative damage defense. Prolonged, acute, or strenuous exercise often leads to an increased radical production and a subsequent oxidative stress in the skeletal muscles, while chronic regular or moderate exercise results in a decrease in oxidative stress. Notably, ...

Read More

Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story

Hypoxia, defined as a reduced oxygen availability, can be observed in many tissues in response to various physiological and pathological conditions. As a hallmark of the altitude environment, ambient hypoxia results from a drop in the oxygen pressure in the atmosphere with elevation. A hypoxic stress can also occur at the cellular level when the oxygen supply through the local microcirculation cannot match the cells’ metabolic needs. This has been suggested in contracting skeletal myofibers ...

Read More

Discovery of Thymosin Beta-4 as a Human Exerkine and Growth Factor

Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in inter-organ crosstalk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin beta-4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X ...

Read More

Exosomes as mediators of intercellular crosstalk in metabolism

Exosomes are nanoparticles secreted by all cell types and are a large component of the broader class of nanoparticles termed extracellular vesicles (EVs). Once secreted, exosomes gain access to the interstitial space and ultimately the circulation, where they exert local paracrine or distal systemic effects. Because of this, exosomes are important components of an intercellular and intraorgan communication system capable of carrying biologic signals from one cell type or tissue to another. The exosomal ...

Read More

Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target

Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these ...

Read More

Characterization of the Skeletal Muscle Secretome Reveals a Role for Extracellular Vesicles and IL1α/IL1β in Restricting Fibro/Adipogenic Progenitor Adipogenesis

Repeated mechanical stress causes injuries in the adult skeletal muscle that need to be repaired. Although muscle regeneration is a highly efficient process, it fails in some pathological conditions, compromising tissue functionality. This may be caused by aberrant cell–cell communication, resulting in the deposition of fibrotic and adipose infiltrates. Here, we investigate in vivo changes in the profile of skeletal muscle secretome during the regeneration process to suggest new targetable ...

Read More

New Peptides as Potential Players in the Crosstalk Between the Brain and Obesity, Metabolic and Cardiovascular Diseases

According to the World Health Organization report published in 2016, 650 million people worldwide suffer from obesity, almost three times more than in 1975. Obesity is defined as excessive fat accumulation which may impair health with non-communicable diseases such as diabetes, cardiovascular diseases (hypertension, coronary artery disease, stroke), and some cancers. Despite medical advances, cardiovascular complications are still the leading causes of death arising from obesity. Excessive fat accumulation ...

Read More

Associations Between Plasma Growth and Differentiation Factor-15 with Aging Phenotypes in Muscle, Adipose Tissue, and Bone

Growth and differentiation factor 15 (GDF-15) is associated with muscle, fat, and bone metabolism; however, this association has not been well characterized. Plasma GDF-15, appendicular skeletal muscle mass (ASM), fat mass (FM), and bone mineral density (BMD) were measured in 146 postmenopausal women. GDF-15 levels were higher in subjects with low Body Mass Index (BMI)-adjusted ASM than in those without (median [interquartile range] 831.3 [635.4-1011.4] vs. 583.8 [455.8-771.1] pg/mL, p = 0.018). ...

Read More

FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between ...

Read More

Function and regulation of muscle stem cells in skeletal muscle development and regeneration: a narrative review

Skeletal muscle plays an essential role in generating the mechanical force necessary to support the movement of our body and daily exercise. Compared with cardiac and smooth muscle, in mammals, skeletal muscle exhibits remarkable regenerative capacity in response to damage. Muscle stem cells, also known as satellite cells, directly contribute to regeneration. Here, we review primary and secondary myogenesis processes with a focus on muscle stem cells, as well as the function and regulation of muscle ...

Read More

Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer’s Disease

Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer’s disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation ...

Read More

The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations

Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise ...

Read More

Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging

In the last decade, clear evidence has emerged that the cellular components of skeletal muscle are important sites for the release of proteins and peptides called “myokines”, suggesting that skeletal muscle plays the role of a secretory organ. After their secretion by muscles, these factors serve many biological functions, including the exertion of complex autocrine, paracrine and/or endocrine effects. In sum, myokines affect complex multi-organ processes, such as skeletal muscle trophism, ...

Read More

Does a Vegetarian Diet Affect the Levels of Myokine and Adipokine in Prepubertal Children?

Myokines are cytokines secreted by muscle and exert autocrine, paracrine, or endocrine effects. Myokines mediate communication between muscle and other organs, including adipose tissue. The aim of the study was to assess serum myokines and their relationships with adipokines and anthropometric and nutritional parameters in children following vegetarian and omnivorous diets. One hundred and five prepubertal children were examined. Among them there were 55 children on a vegetarian diet and 50 children ...

Read More

New Functions of Vav Family Proteins in Cardiovascular Biology, Skeletal Muscle, and the Nervous System

Vav proteins act as tyrosine phosphorylation-regulated guanosine nucleotide exchange factors for Rho GTPases and as molecular scaffolds. In mammals, this family of signaling proteins is composed of three members (Vav1, Vav2, Vav3) that work downstream of protein tyrosine kinases in a wide variety of cellular processes. Recent work with genetically modified mouse models has revealed that these proteins play key signaling roles in vascular smooth and skeletal muscle cells, specific neuronal subtypes, ...

Read More

Exploring the Role of Skeletal Muscle in Insulin Resistance: Lessons from Cultured Cells to Animal Models

Skeletal muscle is essential to maintain vital functions such as movement, breathing, and thermogenesis, and it is now recognized as an endocrine organ. Muscles release factors named myokines, which can regulate several physiological processes. Moreover, skeletal muscle is particularly important in maintaining body homeostasis, since it is responsible for more than 75% of all insulin-mediated glucose disposal. Alterations of skeletal muscle differentiation and function, with subsequent dysfunctional ...

Read More

The Sleep-Immune Crosstalk in Health and Disease

Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body’s defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote ...

Read More

Astrocyte Crosstalk in CNS Inflammation

Astrocytes control multiple processes in the nervous system in health and disease. It is now clear that specific astrocyte subsets or activation states are associated with specific genomic programs and functions. The advent of novel genomic technologies has enabled rapid progress in the characterization of astrocyte heterogeneity and its control by astrocyte interactions with other cells in the central nervous system (CNS). In this review, we provide an overview of the multifaceted roles of ...

Read More

Role of Irisin in Myocardial Infarction, Heart Failure, and Cardiac Hypertrophy

Irisin is a myokine derived from the cleavage of fibronectin type III domain-containing 5. Irisin regulates mitochondrial energy, glucose metabolism, fatty acid oxidation, and fat browning. Skeletal muscle and cardiomyocytes produce irisin and affect various cardiovascular functions. In the early phase of acute myocardial infarction, an increasing irisin level can reduce endothelial damage by inhibiting inflammation and oxidative stress. By contrast, higher levels of irisin in the later phase of ...

Read More

Role of the Myokine Irisin on Bone Homeostasis: Review of the Current Evidence

Bone is a highly dynamic tissue that is constantly adapting to micro-changes to facilitate movement. When the balance between bone building and resorption shifts more towards bone resorption, the result is reduced bone density and mineralization, as seen in osteoporosis or osteopenia. Current treatment strategies aimed to improve bone homeostasis and turnover are lacking in efficacy, resulting in the search for new preventative and nutraceutical treatment options. The myokine irisin, since its discovery ...

Read More

Exercise-induced myokines and their effect on prostate cancer

Exercise is recognized by clinicians in the field of clinical oncology for its potential role in reducing the risk of certain cancers and in reducing the risk of disease recurrence and progression; yet, the underlying mechanisms behind this reduction in risk are not fully understood. Studies applying post-exercise blood serum directly to various types of cancer cell lines provide insight that exercise might have a role in inhibiting cancer growth via altered soluble and cell-free blood contents. ...

Read More

Muscle multiorgan crosstalk with MG53 as a myokine for tissue repair and regeneration

Through stress and injury to tissues, the cell membrane is damaged and can lead to cell death and a cascade of inflammatory events. Soluble factors that mitigate and repair membrane injury are important to normal homeostasis and are a potential therapeutic intervention for regenerative medicine. A myokine is a type of naturally occurring factors that come from muscle and have impact on remote organs. MG53, a tripartite motif-containing family protein, is such a myokine which has protective effects ...

Read More

Roles of physical exercise in neurodegeneration: reversal of epigenetic clock

The epigenetic clock is defined by the DNA methylation (DNAm) level and has been extensively applied to distinguish biological age from chronological age. Aging-related neurodegeneration is associated with epigenetic alteration, which determines the status of diseases. In recent years, extensive research has shown that physical exercise (PE) can affect the DNAm level, implying a reversal of the epigenetic clock in neurodegeneration. PE also regulates brain plasticity, neuroinflammation, and molecular ...

Read More

Sclerostin and bone remodeling biomarkers responses to whole-body cryotherapy (− 110 °C) in healthy young men with different physical fitness levels

We investigated the effects of single and repeated exposures to whole-body cryotherapy on biomarkers of bone remodeling and osteo-immune crosstalk: sclerostin, osteocalcin (OC), C-terminal cross-linked telopeptide of type I collagen (CTx-I), osteoprotegerin (OPG) and free soluble receptor activator for nuclear factor κ B ligand (sRANKL). The study included 22 healthy males, grouped in high physical fitness level (HPhL) and low physical fitness level (LPhL), all undergone 10 consecutive sessions ...

Read More

Diet and exercise reduce pre-existing NASH and fibrosis and have additional beneficial effects on the vasculature, adipose tissue and skeletal muscle via organ-crosstalk

Background: Non-alcoholic steatohepatitis (NASH) has become one of the most common liver diseases and is still without approved pharmacotherapy. Lifestyle interventions using exercise and diet change remain the current treatment of choice and even a small weight loss (5–7%) can already have a beneficial effect on NASH. However, the underlying molecular mechanisms of exercise and diet interventions remain largely elusive, and it is unclear whether they exert their health effects via similar ...

Read More

Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies

Mitochondrial function is vital for normal cellular processes. Mitochondrial damage and oxidative stress have been greatly implicated in the progression of aging, along with the pathogenesis of age-related neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Although antioxidant therapy has been proposed for the prevention and treatment of age-related NDs, unraveling ...

Read More

Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines

Skeletal muscle and bone are connected anatomically and physiologically, and play a crucial role in human locomotion and metabolism. Historically, the coupling between muscle and bone has been viewed in light of mechanotransduction, which dictates that the mechanical forces applied to muscle are transmitted to the skeleton to initiate bone formation. However, these organs also communicate through the endocrine system, orchestrated by a family of cytokines namely myokines (derived from myocytes) and ...

Read More

Myokines mediate the cross talk between skeletal muscle and other organs

Myokines are muscle-derived cytokines and chemokines that act extensively on organs and exert beneficial metabolic functions in the whole-body through specific signal networks. Myokines as mediators provide the conceptual basis for a whole new paradigm useful for understanding how skeletal muscle communicates with other organs. In this review, we summarize and discuss classes of myokines and their physiological functions in mediating the regulatory roles of skeletal muscle on other organs and ...

Read More

COVID-19 and Crosstalk With the Hallmarks of Aging

Within the past several decades, the emergence of new viral diseases with severe health complications and mortality is evidence of an age-dependent, compromised bodily response to abrupt stress with concomitantly reduced immunity. The new severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, causes coronavirus disease 2019 (COVID-19). It has increased morbidity and mortality in persons with underlying chronic diseases and those with a compromised immune system regardless of age and in older ...

Read More

Metabolic communication during exercise

The coordination of nutrient sensing, delivery, uptake and utilization is essential for maintaining cellular, tissue and whole-body homeostasis. Such synchronization can be achieved only if metabolic information is communicated between the cells and tissues of the entire organism. During intense exercise, the metabolic demand of the body can increase approximately 100-fold. Thus, exercise is a physiological state in which intertissue communication is of paramount importance. In this Review, ...

Read More

TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise

The activation of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle coordinates systemic metabolic responses to exercise1. Autophagy—a lysosomal degradation pathway that maintains cellular homeostasis2—is upregulated during exercise, and a core autophagy protein, beclin 1, is required for AMPK activation in skeletal muscle3. Here we describe a role for the innate immune-sensing molecule Toll-like receptor 9 (TLR9)4, and its interaction with beclin 1, ...

Read More

Organ Crosstalk and the Modulation of Insulin Signaling

A highly complex network of organ communication plays a key role in regulating metabolic homeostasis, specifically due to the modulation of the insulin signaling machinery. As a paradigm, the role of adipose tissue in organ crosstalk has been extensively investigated, but tissues such as muscles and the liver are equally important players in this scenario. Perturbation of organ crosstalk is a hallmark of insulin resistance, emphasizing the importance of crosstalk molecules in the modulation of insulin ...

Read More

Multi-Organ Involvement in COVID-19: Beyond Pulmonary Manifestations

Coronavirus Disease 19 (COVID-19), due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become an on-going global health emergency affecting over 94 million cases with more than 2 million deaths globally. Primarily identified as atypical pneumonia, it has developed into severe acute respiratory distress syndrome (ARDS), a multi-organ dysfunction with associated fatality. Ever since its emergence, COVID-19 with its plethora of clinical presentations has signalled its dynamic nature ...

Read More

Muscle-Organ Crosstalk: Focus on Immunometabolism

Skeletal muscle secretes several hundred myokines that facilitate communication from muscle to other organs, such as, adipose tissue, pancreas, liver, gut, and brain. The biological roles of myokines include effects on e.g., memory and learning, as well as glucose and lipid metabolism. The present minireview focuses on recent developments showing that exercise-induced myokines are involved in immunometabolism of importance for the control of e.g., tumor growth and chronic inflammation. In this ...

Read More

Skeletal Muscle-Adipose Tissue-Tumor Axis: Molecular Mechanisms Linking Exercise Training in Prostate Cancer

Increased visceral adiposity may influence the development of prostate cancer (PCa) aggressive tumors and cancer mortality. White adipose tissue (WAT), usually referred to as periprostatic adipose tissue (PPAT), surrounds the prostatic gland and has emerged as a potential mediator of the tumor microenvironment. Exercise training (ET) induces several adaptations in both skeletal muscle and WAT. Some of these effects are mediated by ET-induced synthesis and secretion of several proteins, known as myo- ...

Read More

BDNF Impact on Biological Markers of Depression – Role of Physical Exercise and Training

Depression is the most common and devastating psychiatric disorder in the world. Its symptoms, especially during the pandemic, are observed in all age groups. Exercise training (ET) is well known as a non-pharmacological strategy to alleviate clinical depression. The brain-derived neurotrophic factor (BDNF) is one of the biological factors whose expression and secretion are intensified in response to ET. BDNF is also secreted by contracted skeletal muscle that likely exerts para-, auto- and endocrine ...

Read More

Impact of Intrinsic Muscle Weakness on Muscle-Bone Crosstalk in Osteogenesis Imperfecta

Bone and muscle are highly synergistic tissues that communicate extensively via mechanotransduction and biochemical signaling. Osteogenesis imperfecta (OI) is a heritable connective tissue disorder of severe bone fragility and recently recognized skeletal muscle weakness. The presence of impaired bone and muscle in OI leads to a continuous cycle of altered muscle–bone crosstalk with weak muscles further compromising bone and vice versa. Currently, there is no cure for OI and understanding the ...

Read More

Role of Physical Activity in Bone-Muscle Crosstalk: Biological Aspects and Clinical Implications

Bone and muscle tissues influence each other through the integration of mechanical and biochemical signals, giving rise to bone-muscle crosstalk. They are also known to secrete osteokines, myokines, and cytokines into the circulation, influencing the biological and pathological activities in local and distant organs and cells. In this regard, even osteoporosis and sarcopenia, which were initially thought to be two independent diseases, have recently been defined under the term "osteosarcopenia", ...

Read More

A simple model of immune and muscle cell crosstalk during muscle regeneration

Muscle injury during aging predisposes skeletal muscles to increased damage due to reduced regenerative capacity. Some of the common causes of muscle injury are strains, while other causes are more complex muscle myopathies and other illnesses, and even excessive exercise can lead to muscle damage. We develop a new mathematical model based on ordinary differential equations of muscle regeneration. It includes the interactions between the immune system, healthy and damaged myonuclei as well as satellite ...

Read More

Are Sarcopenia and Cognitive Dysfunction Comorbid after Stroke in the Context of Brain–Muscle Crosstalk?

Stroke is a leading cause of death and disability and is responsible for a significant economic burden. Sarcopenia and cognitive dysfunction are common consequences of stroke, but there is less awareness of the concurrency of these conditions. In addition, few reviews are available to guide clinicians and researchers on how to approach sarcopenia and cognitive dysfunction as comorbidities after stroke, including how to assess and manage them and implement interventions to improve health outcomes. ...

Read More

Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk

Physical exercise is an effective therapy for neurorehabilitation. Exercise has been shown to induce remodeling and proliferation of astrocyte. Astrocytes potentially affect the recruitment and function of neurons; they could intensify responses of neurons and bring more neurons for the process of neuroplasticity. Interactions between astrocytes, microglia and neurons modulate neuroplasticity and, subsequently, neural circuit function. These cellular interactions promote the number and function of ...

Read More

A Review of the Role of Endo/Sarcoplasmic Reticulum-Mitochondria Ca2+ Transport in Diseases and Skeletal Muscle Function

The physical contact site between a mitochondrion and endoplasmic reticulum (ER), named the mitochondria-associated membrane (MAM), has emerged as a fundamental platform for regulating the functions of the two organelles and several cellular processes. This includes Ca2+ transport from the ER to mitochondria, mitochondrial dynamics, autophagy, apoptosis signalling, ER stress signalling, redox reaction, and membrane structure maintenance. Consequently, the MAM is suggested to be involved in, and as ...

Read More

Extracellular Vesicles and Exosomes: Insights From Exercise Science.

The benefits of exercise on health and longevity are well-established, and evidence suggests that these effects are partially driven by a spectrum of bioactive molecules released into circulation during exercise (e.g., exercise factors or ‘exerkines’). Recently, extracellular vesicles (EVs), including microvesicles (MVs) and exosomes or exosome-like vesicles (ELVs), were shown to be secreted concomitantly with exerkines. These EVs have therefore been proposed to act as cargo carriers ...

Read More

Morphological Evidence of Telocytes in Skeletal Muscle Interstitium of Exercised and Sedentary Rodents

Skeletal muscle atrophy, resulting from states of hypokinesis or immobilization, leads to morphological, metabolic, and functional changes within the muscle tissue, a large variety of which are supported by the stromal cells populating the interstitium. Telocytes represent a recently discovered population of stromal cells, which has been increasingly identified in several human organs and appears to participate in sustaining cross-talk, promoting regenerative mechanisms and supporting differentiation ...

Read More

The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection

Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer's disease, or the most common neurodegenerative motor ...

Read More

Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism.

The human body is host to a multitude of bacteria, fungi, viruses and other species in the intestine, collectively known as the microbiota. Dietary carbohydrates which bypass digestion and absorption are broken down and fermented by the microbiota to produce short-chain fatty acids (SCFAs). Previous research has established the role of SCFAs in the control of human metabolic pathways. In this review, we evaluate SCFAs as a metabolic regulator and how they might improve endurance performance in athletes. ...

Read More

Hypothalamus-skeletal muscle crosstalk during exercise and its role in metabolism modulation

Physical inactivity is a major public health problem that contributes to the development of several pathologies such as obesity, type 2 diabetes and cardiovascular diseases. Regular exercise mitigates the progression of these metabolic problems and contributes positively to memory and behavior. Therefore, public health agencies have incorporated exercise in the treatment of widespread disorders. The hypothalamus, specifically the ventromedial and the arcuate nuclei, responds to exercise activity ...

Read More

Crosstalk between Mast Cells and Lung Fibroblasts

Mast cells play an important role in asthma, however, the interactions between mast cells, fibroblasts and epithelial cells in idiopathic pulmonary fibrosis (IPF) are less known. The objectives were to investigate the effect of mast cells on fibroblast activity and migration of epithelial cells. Lung fibroblasts from IPF patients and healthy individuals were co-cultured with LAD2 mast cells or stimulated with the proteases tryptase and chymase. Human lung fibroblasts and mast cells were cultured ...

Read More