Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats

Nonalcoholic fatty liver disease (NAFLD) is a major health concern. Endoplasmic reticulum (ER) stress, inflammation, and metabolic dysfunctions may be targeted to prevent the progress of nonalcoholic fatty liver disease. Sulforaphane (SFN), a sulfur-containing compound that is abundant in broccoli florets, seeds, and sprouts, has been reported to have beneficial effects on attenuating metabolic diseases. In light of this, the present study was designed to elucidate the mechanisms by which SFN ameliorated ER stress, inflammation, lipid metabolism, and insulin resistance — induced by a high-fat diet and ionizing radiation (IR) in rats. In our study, the rats were randomly divided into five groups: control, HFD, HFD + SFN, HFD + IR, and HFD + IR + SFN groups. After the last administration of SFN, liver and blood samples were taken. As a result, the lipid profile, liver enzymes, glucose, insulin, IL-1β, adipokines (leptin and resistin), and PI3K/AKT protein levels, as well as the mRNA gene expression of ER stress markers (IRE-1, sXBP-1, PERK, ATF4, and CHOP), fatty acid synthase (FAS), peroxisome proliferator–activated receptor-α (PPAR-α). Interestingly, SFN treatment modulated the levels of proinflammatory cytokine including IL-1β, metabolic indices (lipid profile, glucose, insulin, and adipokines), and ER stress markers in HFD and HFD + IR groups. SFN also increases the expression of PPAR-α and AMPK genes in the livers of HFD and HFD + IR groups. Meanwhile, the gene expression of FAS and CHOP was significantly attenuated in the SFN-treated groups. Our results clearly show that SFN inhibits liver toxicity induced by HFD and IR by ameliorating the ER stress events in the liver tissue through the upregulation of AMPK and PPAR-α accompanied by downregulation of FAS and CHOP gene expression.

https://doi.org/10.1007/s12192-022-01286-w