Hypothalamus-skeletal muscle crosstalk during exercise and its role in metabolism modulation

Physical inactivity is a major public health problem that contributes to the development of several pathologies such as obesity, type 2 diabetes and cardiovascular diseases. Regular exercise mitigates the progression of these metabolic problems and contributes positively to memory and behavior. Therefore, public health agencies have incorporated exercise in the treatment of widespread disorders. The hypothalamus, specifically the ventromedial and the arcuate nuclei, responds to exercise activity and modulates energy metabolism through stimulation of the sympathetic nervous system and catecholamine secretion into the circulation. In addition, physical performance enhances cognitive functions and memory, mediated mostly by an increase in brain-derived neurotrophic factor levels in brain. During exercise training, skeletal muscle myofibers remodel their biochemical, morphological and physiological state. Moreover, skeletal muscle interacts with other organs by the release into the circulation of myokines, molecules that exhibit autocrine, paracrine and endocrine functions. Several studies have focused on the role of skeletal muscle and tissues in response to physical activity. However, how the hypothalamus could influence the skeletal muscle task in the context of exercise is less studied. Here, we review recent data about hypothalamus-skeletal muscle crosstalk in response to physical activity and focus on specific aspects such as the neuroendocrinological effects of exercise and the endocrine functions of skeletal muscle, to provide a perspective for future study directions.
 
https://www.researchgate.net/publication/352045174_Hypothalamus-skeletal_muscle_crosstalk_during_exercise_and_its_role_in_metabolism_modulation