Intensity-dependent cardiopulmonary response during and after strength training

Whereas cardiopulmonary responses are well understood in endurance training, they are rarely described in strength training. This cross-over study examined acute cardiopulmonary responses in strength training. Fourteen healthy male strength training-experienced participants (age 24.5 ± 2.9 years; BMI 24.1 ± 2.0 kg/m2) were randomly assigned into three strength training sessions (three sets of ten repetitions) with different intensities (50%, 62,5%, and 75% of the 3-Repetition Maximum) of squats in a smith machine. Cardiopulmonary (impedance cardiography, ergo-spirometry) responses were continuously monitored. During exercise period, heart rate (HR 143 ± 16 vs. 132 ± 15 vs. 129 ± 18 bpm, respectively; p < 0.01; η2p 0.54) and cardiac output (CO: 16.7 ± 3.7 vs. 14.3 ± 2.5 vs. 13.6 ± 2.4 l/min, respectively; p < 0.01; η2p 0.56) were higher at 75% of 3-RM compared to those at the other intensities. We noted similar stroke volume (SV: p = 0.08; η2p 0.18) and end-diastolic volume (EDV: p = 0.49). Ventilation (VE) was higher at 75% compared to 62.5% and 50% (44.0 ± 8.0 vs. 39.6 ± 10.4 vs. 37.6 ± 7.7 l/min, respectively; p < 0.01; η2p 0.56). Respiration rate (RR; p = .16; η2p 0.13), tidal volume (VT: p = 0.41; η2p 0.07) and oxygen uptake (VO2: p = 0.11; η2p 0.16) did not differ between intensities. High systolic and diastolic blood pressure were evident (62.5% 3-RM 197 ± 22.4/108.8 ± 13.4 mmHG). During the post-exercise period (60 s), SV, CO, VE, VO2, and VCO2 were higher (p < 0.01) than during the exercise period, and the pulmonary parameters differed markedly between intensities (VE p < 0.01; RR p < 0.01; VT p = 0.02; VO2 p < 0.01; VCO2 p < 0.01). Despite the differences in strength training intensity, the cardiopulmonary response reveals significant differences predominantly during the post-exercise period. Intensity-induced breath holding induces high blood pressure peaks and cardiopulmonary recovery effects after exercise.

https://doi.org/10.1038/s41598-023-33873-x