High-Intensity Interval Cycling and Running Yield a Similar Myokine and Osteokine Response in Young Adult Females

Background: The differential responses of the myokine irisin, in combination with changes in markers and regulators of bone remodeling to high-intensity interval exercise of high and low impact, were examined in 18 young adult females (22.5 ± 2.7 years). Methods: Participants performed two high-intensity interval exercise trials in random order: running on a treadmill and cycling on a cycle ergometer. Trials consisted of eight 1 min running or cycling intervals at ≥ 90% of maximal heart rate, separated by 1 min passive recovery intervals. Blood samples were collected at rest (pre-exercise) and 5 min, 1 h, and 24 h following each exercise trial. Irisin, osteocalcin, sclerostin, osteoprotegerin (OPG), receptor activator nuclear factor kappa-β ligand (RANKL), and parathyroid hormone (PTH) were analyzed in serum, with post-exercise concentrations being corrected for exercise-induced changes in plasma volume. Results: Irisin was elevated 24 h post-exercise compared to its resting values in both trials (20%, p < 0.05) and was higher after cycling compared to running (exercise mode effect, p < 0.05) with no interaction. Osteocalcin, sclerostin, PTH, and RANKL increased from pre- to 5 min post-exercise (18%, 37%, 83%, and 33%, respectively, p < 0.05), returning to baseline levels in 1 h, with no trial or interaction effects. OPG showed a time effect (p < 0.05), reflecting an overall increase at 5 min and 1 h post-exercise, which was not significant after the Bonferroni adjustment. Conclusions: In young adult females, high-intensity interval exercise induced an immediate response in markers and regulators of bone remodeling and a later response in irisin concentrations, which was independent of the gravitational impact.

https://doi.org/10.3390/endocrines4020025