Irisin promotes fracture healing by improving osteogenesis and angiogenesis

Background: Osteogenesis and angiogenesis are important for bone fracture healing. Irisin is a muscle-derived monokine that is associated with bone formation.

Methods: To demonstrate the effect of irisin on bone fracture healing, closed mid-diaphyseal femur fractures were produced in 8-week-old C57BL/6 mice. Irisin was administrated intraperitoneally every other day after surgery, fracture healing was assessed by using X-rays. Bone morphometry of the fracture callus were assessed by using micro-computed tomography. Femurs of mice from each group were assessed by the three-point bending testing. Effect of irisin on osteogenic differentiation in mesenchymal stem cells in vitro was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), alkaline phosphatase staining and alizarin red staining. Angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by qRT-PCR, migration tests, and tube formation assays.

Results: Increased callus formation, mineralization and tougher fracture healing were observed in the irisin-treated group than in the control group, indicating the better fracture callus healing due to Irisin treatment. The vessel surface and vessel volume fraction of the callus also increased in the irisin-treated group. The expression of BMP2, CD31, and VEGF in callus were enhanced in the irisin-treated group. In mouse bone mesenchymal stem cells, irisin promoted ALP expression and mineralization, and increased the expression of osteogenic genes, including OSX, Runx2, OPG, ALP, OCN and BMP2. Irisin also promoted HUVEC migration and tube formation. Expression of angiogenic genes, including ANGPT1, ANGPT2, VEGFb, CD31, FGF2, and PDGFRB in HUVECs were increased by irisin.

Conclusion: All the results indicate irisin can promote fracture healing through osteogenesis and angiogenesis. These findings help in the understanding of muscle–bone interactions during fracture healing.

https://doi.org/10.1016/j.jot.2022.07.006