Can physical activity affects on Omicron mutation: Cross talk between skeletal muscle and the immune system

Document Type : Review Articles


MSc Exercise Physiology, Department of Exercise Physiology, Faculty of Physical Education, Kharazmi University, Tehran, Iran


Omicron, a new type of SARS-CoV-2 was first reported by South Africa to the World Health Organization (WHO) on November 24, 2021. Two days after Africa was reported to the World Health Organization, the Omicron was identified as a global threat. Omicron has many genetic mutations, the potential effects of which are more dangerous than other SARS-CoV-2 genetic mutations. With the increase in vaccination in the world, the amount of physical activity to improve the functioning of the immune system decreased. Relying on vaccines alone cannot guarantee an improvement in the functioning of the immune system and the people of the world, given the lack of knowledge about the prevalence of omicron and its potential dangers, should look for ways to boost the immune system. In this study, we highlight the importance of increasing physical activity at the time of omicron outbreaks, along with the proposed protocols.

What is already known on this subject?

The risks of Omicron along with the increase in mortality, the prevalence of which has recently increased again.


What this study adds?

Highlighting the importance of Omicron in the body's immune system, especially changes in myokines and the importance of physical activity to control and deal with it.


Main Subjects





Compliance with ethical standards

Conflict of interest The author declare that she has no conflict of interest.

Ethical approval Not applicable.

Informed consent Not applicable.

Author contributions

Conceptualization: R.R.; Methodology: R.R.; Software: None; Validation: R.R.; Formal analysis: None; Investigation: R.R.; Resources: R.R.; Data curation: R.R.; Writing - original draft: R.R.; Writing - review & editing: R.R.; Visualization: R.R.; Supervision: R.R.; Project administration: R.R.; Funding acquisition: None.

Agha-Alinejad, H., Ahmadi Hekmatikar, A. H., Ruhee, R. T., Shamsi, M. M., Rahmati, M., Khoramipour, K., & Suzuki, K. (2022). A Guide to Different Intensities of Exercise, Vaccination, and Sports Nutrition in the Course of Preparing Elite Athletes for the Management of Upper Respiratory Infections during the COVID-19 Pandemic: A Narrative Review. International Journal of Environmental Research and Public Health, 19(3), 1888. doi:
Ahmadi Hekmatikar, A. H., Ferreira Júnior, J. B., Shahrbanian, S., & Suzuki, K. (2022). Functional and psychological changes after exercise training in post-COVID-19 patients discharged from the hospital: A PRISMA-compliant systematic review. International Journal of Environmental Research and Public Health, 19(4), 2290. doi:
Ahmadi Hekmatikar, A. H., & Molanouri Shamsi, M. (2020). Effect of Exercise on Immunological Indicators during the COVID-19 Pandemic. Journal of Arak University of Medical Sciences, 23(5), 584-603. doi:
Bai, Y., Du, Z., Xu, M., Wang, L., Wu, P., Lau, E. H., Cowling, B. J., & Meyers, L. A. (2021). International risk of SARS-CoV-2 Omicron variant importations originating in South Africa. MedRxiv.
Brolinson, P. G., & Elliott, D. (2007). Exercise and the immune system. Clinics in Sports Medicine, 26(3), 311-319. doi:
Callaway, E. (2021). COVID vaccine boosters: the most important questions. Nature, 596(7871), 178-180. doi:
Chagas, E. F. B., Biteli, P., Candeloro, B. M., Rodrigues, M. A., & Rodrigues, P. H. (2020). Physical exercise and COVID-19: a summary of the recommendations. AIMS Bioengineering, 7(4), 236-241. doi:
COVID, C., & Team, R. (2021). SARS-CoV-2 B. 1.1. 529 (Omicron) Variant—United States, December 1–8, 2021. Morbidity and Mortality Weekly Report, 70(50), 1731.
Dan, J. M., Mateus, J., Kato, Y., Hastie, K. M., Yu, E. D., Faliti, C. E., Grifoni, A., Ramirez, S. I., Haupt, S., Frazier, A., Nakao, C., Rayaprolu, V., Rawlings, S. A., Peters, B., Krammer, F., Simon, V., Saphire, E. O., Smith, D. M., Weiskopf, D., . . . Crotty, S. (2021). Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 371(6529). doi:
Della Pia, A., Kim, G. Y., Ahn, J., Liu, Y., Lukasik, B., Contractor, A., … Leslie, L. A. (2021). Production of Anti-Spike Antibodies in Response to COVID Vaccine in Lymphoma Patients. Blood, 138, 1347. doi:
Ehrman, J. K., Gordon, P. M., Visich, P. S., & Keteyian, S. J. (2009). Clinical exercise physiology. Human Kinetics.
Fallon, K. (2020). Exercise in the time of COVID-19. Aust J Gen Pract, 49(Suppl 13), 1-2.
Farhani, F., Shahrbanian, S., Auais, M., Hekmatikar, A. H. A., & Suzuki, K. (2022). Effects of aerobic training on brain plasticity in patients with mild cognitive impairment: a systematic review of randomized controlled trials. Brain Sciences, 12(6), 732. doi:
Fontanet, A., & Cauchemez, S. (2020). COVID-19 herd immunity: where are we? Nature Reviews Immunology, 20(10), 583-584. doi:
Goh, J., Niksirat, N., & Campbell, K. L. (2014). Exercise training and immune crosstalk in breast cancer microenvironment: exploring the paradigms of exercise-induced immune modulation and exercise-induced myokines. American Journal of Translational Research, 6(5), 422. PMID: 25360210; PMCID: PMC4212920.
Grifoni, A., Sidney, J., Vita, R., Peters, B., Crotty, S., Weiskopf, D., & Sette, A. (2021). SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host & Microbe, 29(7), 1076-1092. doi:
Gu, H., Krishnan, P., Ng, D. Y., Chang, L. D., Liu, G. Y., Cheng, S. S., … Lau, L. H. (2021). Probable transmission of SARS-CoV-2 Omicron variant in quarantine hotel, Hong Kong, China, November 2021. Emerging Infectious Diseases, 28(2),460-462. doi:
He, F., Deng, Y., & Li, W. (2020). Coronavirus disease 2019: What we know? J Med Virol, 92(7), 719-725. doi:
He, X., Hong, W., Pan, X., Lu, G., & Wei, X. (2021). SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm, 2(4), 838-845. doi:
Hekmatikar, A. H. A., Shamsi, M. M., Ashkazari, Z. S. Z., & Suzuki, K. (2021). Exercise in an overweight patient with COVID-19: a case study. International Journal of Environmental Research and Public Health, 18(11), 5882. doi:
Ita, K. (2021). Coronavirus disease (COVID-19): Current status and prospects for drug and vaccine development. Archives of Medical Research, 52(1), 15-24. doi:
Jiang, X., Niu, Y., Li, X., Li, L., Cai, W., Chen, Y., Liao, B., & Wang, E. (2020). Is a 14-day quarantine period optimal for effectively controlling coronavirus disease 2019 (COVID-19)? MedRxiv.
Johnson, W. R. (1960). Science and medicine of exercise and sports. Academic Medicine, 35(10), 989.
Keeton, R., Tincho, M. B., Ngomti, A., Baguma, R., Benede, N., Suzuki, A., … Karim, F. (2022). T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature, 603(7901), 488-492. doi:
Jimeno-Almazán, A., Pallarés, J. G., Buendía-Romero, Á., Martínez-Cava, A., Franco-López, F., Sánchez-Alcaraz Martínez, B. J., … Courel-Ibáñez, J. (2021). Post-COVID-19 syndrome and the potential benefits of exercise. International Journal of Environmental Research and Public Health, 18(10), 5329. doi:
Jiang, X., Niu, Y., Li, X., Li, L., Cai, W., Chen, Y., … Wang, E. (2020). Is a 14-day quarantine period optimal for effectively controlling coronavirus disease 2019 (COVID-19)? MedRxiv.
Kupferschmidt, K. (2021). Where did ‘weird’Omicron come from? American Association for the Advancement of Science.
Laing, A. G., Lorenc, A., Del Barrio, I. D. M., Das, A., Fish, M., Monin, L., … Francos-Quijorna, I. (2020). A dynamic COVID-19 immune signature includes associations with poor prognosis. Nature Medicine, 26(10), 1623-1635. doi:
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., … Zhang, L. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220. doi:
Leal, L. G., Lopes, M. A., & Batista Jr, M. L. (2018). Physical exercise-induced myokines and muscle-adipose tissue crosstalk: a review of current knowledge and the implications for health and metabolic diseases. Frontiers in Physiology, 9, 1307. doi:
Lendacki, F. R., Teran, R. A., Gretsch, S., Fricchione, M. J., & Kerins, J. L. (2021). COVID-19 outbreak among attendees of an exercise facility—Chicago, Illinois, August–September 2020. Morbidity and Mortality Weekly Report, 70(9), 321. doi:
Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., …Wang, F. (2020). Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature Medicine, 26(6), 842-844.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., … Zhu, N. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565-574. doi:
Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology, 20(6), 355-362. doi:
Moderbacher, C. R., Ramirez, S. I., Dan, J. M., Grifoni, A., Hastie, K. M., Weiskopf, D., … Choi, J. (2020). Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell, 183(4), 996-1012. e1019. doi:
Pedersen, B. K., Åkerström, T. C., Nielsen, A. R., & Fischer, C. P. (2007). Role of myokines in exercise and metabolism. Journal of Applied Physiology. doi:
Puccinelli, P. J., da Costa, T. S., Seffrin, A., de Lira, C. A. B., Vancini, R. L., Nikolaidis, P. T., … Andrade, M. S. (2021). Reduced level of physical activity during COVID-19 pandemic is associated with depression and anxiety levels: an internet-based survey. BMC Public Health, 21(1), 425. doi:
Pulliam, J. R., van Schalkwyk, C., Govender, N., von Gottberg, A., Cohen, C., Groome, M. J., …Moultrie, H. (2021). Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. MedRxiv.
Roessler, A., Riepler, L., Bante, D., von Laer, D., & Kimpel, J. (2021). SARS-CoV-2 B. 1.1. 529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals. MedRxiv. doi:
Rogeri, P. S., Gasparini, S. O., Martins, G. L., Costa, L. K. F., Araujo, C., Lugaresi, R., Kopfler, M., & Lancha, A. H. (2020). Crosstalk Between Skeletal Muscle and Immune System: Which Roles Do IL-6 and Glutamine Play? [Review]. Frontiers in Physiology, 11. doi:
Schultze, J. L., & Aschenbrenner, A. C. (2021). COVID-19 and the human innate immune system. Cell.
Sellami, M., Gasmi, M., Denham, J., Hayes, L. D., Stratton, D., Padulo, J., & Bragazzi, N. (2018). Effects of acute and chronic exercise on immunological parameters in the elderly aged: Can physical activity counteract the effects of aging? [Review]. Frontiers in Immunology, 9(2187). doi:
Sette, A., & Crotty, S. (2021). Adaptive immunity to SARS-CoV-2 and COVID-19. Cell.
Suzuki, K., Hekmatikar, A. H. A., Jalalian, S., Abbasi, S., Ahmadi, E., Kazemi, A., Ruhee, R. T., & Khoramipour, K. (2022). The potential of exerkines in women’s COVID-19: A new idea for a better and more accurate understanding of the mechanisms behind physical exercise. International Journal of Environmental Research and Public Health, 19(23), 15645.
Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology, 20(6), 363-374.
Tayebi, S. M., Hekmatikar, A. A., Ghanbari-Niaki, A., & Fathi, R. (2020). Ghrelin behavior in exercise and training. J Med. Sci, 27, 85-111. URL:
Team, C. C.-R. (2021). SARS-CoV-2 B.1.1.529 (Omicron) Variant - United States, December 1-8, 2021. MMWR. Morbidity and Mortality Weekly Report, 70(50), 1731-1734. doi:
Tzenios, N., Chahine, M., & Tazanios, M. (2023). Better strategies for coronavirus (COVID-19) vaccination. Special Journal of the Medical Academy and Other Life Sciences., 1(2).
Vaughan, A. (2021). Omicron emerges. Elsevier. doi:
Viana, R., Moyo, S., Amoako, D. G., Tegally, H., Scheepers, C., Lessells, R. J., Giandhari, J., Wolter, N., Everatt, J., & Rambaut, A. (2021). Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. MedRxiv. doi:
Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444-1448.
Yang, L., Liu, S., Liu, J., Zhang, Z., Wan, X., Huang, B., Chen, Y., & Zhang, Y. (2020). COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduction and Targeted Therapy, 5(1),
Zhang, Q., Bastard, P., Liu, Z., Le Pen, J., Moncada-Velez, M., Chen, J., … Korol, C. (2020). Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 370(6515). doi:
Zhou, M., Zhang, X., & Qu, J. (2020). Coronavirus disease 2019 (COVID-19): a clinical update. Frontiers of Medicine, 14(2), 126-135. doi:
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., & Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. doi:
Zimerman, R. A., Ferrareze, P. A. G., Cadegiani, F. A., Wambier, C. G., do Nascimento Fonseca, D., …Thompson, C. E. (2021). Comparative genomics and characterization of SARS-CoV-2 P. 1 (Gamma) Variant of Concern (VOC) from Amazonas, Brazil. MedRxiv. doi: