The effect of high-intensity interval training on IL-22 and STAT3 gene expression of liver tissue in steatosis animal model

Document Type : Original Article

Authors

1 M.Sc. Department of Physical Education and Sport Science Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran.

2 Assistant Professor, Department of Physical Education and Sport Science Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran.

3 PhD Student of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan , Iran.

Abstract

Inflammation is a major component of almost all acute and chronic liver disorders, including non-alcoholic fatty liver disease. This study aimed to investigate the effect of high-intensity interval training on IL-22 and STAT3 gene expression of liver tissue in steatosis animal model. In this experimental study, 32 rats (weighing 200-250 gr) were selected and randomly divided into 4 groups including healthy control, fatty liver, HIIT and fatty liver + HIIT group. Rats were infected with fatty liver by oral tetracycline at a dose of 140 mg/kg (soluble in 2 ml of water) for 7 days. The HIIT exercise program performed on treadmill five sessions per week for 5 weeks. The IL-22 and STAT3 gene expressions in the liver tissue of samples were measured by Real Time PCR. Data were analyzed by One-way ANOVA and Tukey post hoc tests at significance level P <0.05. The results showed that the gene expression of IL-22 in liver tissue in HIIT group and fatty liver + HIIT was significantly lower than that in the fatty liver group (P = 0.001). Also, the gene expression of STAT3 in liver tissue in HIIT group and fatty liver + HIIT was significantly higher than that in the fatty liver group (P = 0.001). According to the results, the HIIT training program seems to help improve the liver steatosis.

What is already known on this subject?

Intense interval exercise led to a significant decrease in the expression of the IL-22 gene and a significant increase in the expression of the STAT3 gene in the steatosis animal model.

 

Acknowledgements

This article is taken from the master's thesis, and by this means, sincere thanks and appreciation are given to all the people who participated in this research.

Keywords

Main Subjects


Acknowledgements

This article is taken from the master's thesis, and by this means, sincere thanks and appreciation are given to all the people who participated in this research.

Funding

There is no funding to report.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All procedures performed in studies involving animal participants were in accordance with the ethical standards of the institutional and/or national research committee and with the Declaration of Helsinki.

Informed consent done.

Author contributions

Conceptualization: V.E.Gh, M.A, T.G.L, H.Ch; Methodology: V.E.Gh, M.A.; Software: H.Ch.; Validation: T.G.L.; Formal analysis: V.E.Gh.; Investigation: H.Ch.; Resources: V.E.Gh.; Data curation: T.G.L.; Writing - original draft: M.A.; Writing - review & editing: H.Ch, T.G.L.; Visualization: M.A.; Supervision: M.A.; Project administration: V.E.Gh.; Funding acquisition: M.A.

Alvarenga-Filho, H., Sacramento, P. M., Ferreira, T. B., Hygino, J., Abreu, J. E. C., Carvalho, S. R., . . . Bento, C. A. J. J. o. n. (2016). Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators. 293, 91-99. doi: https://doi.org/10.1016/j.jneuroim.2016.02.014
Beavers, K. M., & Nicklas, B. J. J. F. i. b. (2011). Effects of lifestyle interventions on inflammatory markers in the metabolic syndrome. 3, 168. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665333/
Begue, G., Douillard, A., Galbes, O., Rossano, B., Vernus, B., Candau, R., & Py, G. J. P. o. (2013). Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. 8(2), e57141. doi: https://doi.org/10.1371/journal.pone.0057141
Carmo, R. F., Cavalcanti, M. S., & Moura, P. J. C. (2017). Role of Interleukin-22 in chronic liver injury. 98, 107-114. doi: https://doi.org/10.1016/j.cyto.2016.08.023
Dalmas, E., Venteclef, N., Caer, C., Poitou, C., Cremer, I., Aron-Wisnewsky, J., . . . Clément, K. J. D. (2014). T cell–derived IL-22 amplifies IL-1β–driven inflammation in human adipose tissue: Relevance to obesity and type 2 diabetes. 63(6), 1966-1977. doi: https://doi.org/10.2337/db13-1511
Dudakov, J. A., Hanash, A. M., & van den Brink, M. R. J. A. r. o. i. (2015). Interleukin-22: immunobiology and pathology. 33, 747-785.
Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., . . . Beal, M. F. J. J. o. N. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. 20(12), 4389-4397. doi: https://doi.org/10.1523/JNEUROSCI.20-12-04389.2000
Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. J. T. J. o. p. (2012). Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. 590(5), 1077-1084. doi: https://doi.org/10.1113/jphysiol.2011.224725
Ikeuchi, H., Kuroiwa, T., Hiramatsu, N., Kaneko, Y., Hiromura, K., Ueki, K., . . . Rheumatism. (2005). Expression of interleukin‐22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. 52(4), 1037-1046. doi: https://doi.org/10.1002/art.20965
Kalaki-Jouybari, F., Shanaki, M., Delfan, M., Gorgani-Firouzjae, S., Khakdan, S. J. A. o. p., & biochemistry. (2020). High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. 126(3), 242-249. doi: https://doi.org/10.1080/13813455.2018.1510968
Keating, S. E., George, J., Johnson, N. A. J. E. r. o. g., & hepatology. (2015). The benefits of exercise for patients with non-alcoholic fatty liver disease. 9(10), 1247-1250. doi: https://doi.org/10.1586/17474124.2015.1075392
Ki, S. H., Park, O., Zheng, M., Morales‐Ibanez, O., Kolls, J. K., Bataller, R., & Gao, B. J. H. (2010). Interleukin‐22 treatment ameliorates alcoholic liver injury in a murine model of chronic‐binge ethanol feeding: role of signal transducer and activator of transcription 3. 52(4), 1291-1300. doi: https://doi.org/10.1002/hep.23837
Lejeune, D., Dumoutier, L., Constantinescu, S., Kruijer, W., Schuringa, J. J., & Renauld, J.-C. J. J. o. B. C. (2002). Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line: pathways that are shared with and distinct from IL-10. 277(37), 33676-33682. doi: https://doi.org/10.1074/jbc.M204204200
Mo, R., Lai, R., Lu, J., Zhuang, Y., Zhou, T., Jiang, S., . . . Liu, Y. J. T. (2018). Enhanced autophagy contributes to protective effects of IL-22 against acetaminophen-induced liver injury. 8(15), 4170. doi: https://doi.org/10.7150/thno.25798
Niederreiter, L., & Tilg, H. J. L. R. (2018). Cytokines and fatty liver diseases. 2(1), 14-20. doi: https://doi.org/10.1016/j.livres.2018.03.003
Pasarica, M., Sereda, O. R., Redman, L. M., Albarado, D. C., Hymel, D. T., Roan, L. E., . . . Smith, S. R. J. D. (2009). Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. 58(3), 718-725. doi: https://doi.org/10.2337/db08-1098
Pattamaprapanont, P., Muanprasat, C., Soodvilai, S., Srimaroeng, C., & Chatsudthipong, V. J. T. r. o. d. s. R. (2016). Effect of exercise training on signaling of interleukin-6 in skeletal muscles of type 2 diabetic rats. 13(2-3), 197. doi: https://doi.org/10.1900/RDS.2016.13.197
Ramos, J. S., Dalleck, L. C., Stennett, R. C., Mielke, G. I., Keating, S. E., Murray, L., . . . Therapy. (2020). Effect of Different Volumes of Interval Training and Continuous Exercise on Interleukin-22 in Adults with Metabolic Syndrome: A Randomized Trial. 13, 2443. doi: https://doi.org/10.2147/DMSO.S251567
Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. J. S. m. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. 45, 679-692. doi: https://doi.org/10.1007/s40279-015-0321-z
Rangel, M., Renno, A. S., Oliveira-Junior, M. C., de Moraes, G., Mahler, J. d. A. C., Soares, C. R., . . . Belvisi, M. G. (2017). Involvement of STAT-3 in the Beneficial Effects of Aerobic Exercise in a Model of Smoke-Induced COPD. In: Eur Respiratory Soc.doi: https://doi.org/10.1183/1393003.congress-2017.PA3728
Shabana, M., Ibrahim, H. M., Khadre, S. E., Elemam, M. G. J. T. J. o. B., & Zoology, A. (2012). Influence of rifampicin and tetracycline administration on some biochemical and histological parameters in albino rats. 65(5), 299-308. doi: https://doi.org/10.1016/j.jobaz.2012.10.009
Slentz, C. A., Tanner, C. J., Bateman, L. A., Durheim, M. T., Huffman, K. M., Houmard, J. A., & Kraus, W. E. J. D. c. (2009). Effects of exercise training intensity on pancreatic β-cell function. 32(10), 1807-1811. doi: https://doi.org/10.2337/dc09-0032
Steckling, F., Farinha, J., Santos, D., Bresciani, G., Mortari, J., Stefanello, S., . . . diabetes. (2016). High intensity interval training reduces the levels of serum inflammatory cytokine on women with metabolic syndrome. 124(10), 597-601.
Sun, X., & Mao, J. J. E. R. M. P. S. (2018). Role of Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in cardioprotection of exercise preconditioning. 22(15), 4975-4986. URL: https://www.europeanreview.org/wp/wp-content/uploads/4975-4986.pdf
Tjønna, A. E., Lee, S. J., Rognmo, Ø., Stølen, T. O., Bye, A., Haram, P. M., . . . Slørdahl, S. A. J. C. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. 118(4), 346-354. doi: https://doi.org/10.1161/CIRCULATIONAHA.108.772822
Trenerry, M. K., Carey, K. A., Ward, A. C., Farnfield, M. M., & Cameron-Smith, D. J. R. r. (2008). Exercise-induced activation of STAT3 signaling is increased with age. 11(4), 717-724.
Trenerry, M. K., Della Gatta, P. A., Larsen, A. E., Garnham, A. P., Cameron‐Smith, D. J. M., & nerve. (2011). Impact of resistance exercise training on interleukin‐6 and JAK/STAT in young men. 43(3), 385-392. doi: https://doi.org/10.1002/mus.21875
Woo, G. A., & O'Brien, C. J. C. i. l. d. (2012). Long-term management of alcoholic liver disease. 16(4), 763-781.
Wu, Y., Min, J., Ge, C., Shu, J., Tian, D., Yuan, Y., & Zhou, D. J. I. J. o. B. S. (2020). Interleukin 22 in liver injury, inflammation and cancer. 16(13), 2405. doi: https://doi.org/10.7150/ijbs.38925
Yang, L., Zhang, Y., Wang, L., Fan, F., Zhu, L., Li, Z., . . . Huang, Z. J. J. o. h. (2010). Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. 53(2), 339-347. doi: https://doi.org/10.1016/j.jhep.2010.03.004
Yang, X., & Zheng, S. G. J. A. r. (2014). Interleukin-22: a likely target for treatment of autoimmune diseases. 13(6), 615-620. doi: https://doi.org/10.1016/j.autrev.2013.11.008
Zhao, J., Qi, Y.-F., & Yu, Y.-R. J. A. o. h. (2021). STAT3: A key regulator in liver fibrosis. 21, 100224.
Zhao, J., Tian, Y., Xu, J., Liu, D., Wang, X., Zhao, B. J. L. i. h., & disease. (2011). Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats. 10(1), 1-7. doi: https://doi.org/10.1186/1476-511X-10-225
Ziesché, E., Bachmann, M., Kleinert, H., Pfeilschifter, J., & Mühl, H. J. J. o. B. C. (2007). The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. 282(22), 16006-16015. doi: https://doi.org/10.1074/jbc.M611040200