Alvarenga-Filho, H., Sacramento, P. M., Ferreira, T. B., Hygino, J., Abreu, J. E. C., Carvalho, S. R., . . . Bento, C. A. J. J. o. n. (2016). Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators. 293, 91-99. doi:
https://doi.org/10.1016/j.jneuroim.2016.02.014
Begue, G., Douillard, A., Galbes, O., Rossano, B., Vernus, B., Candau, R., & Py, G. J. P. o. (2013). Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. 8(2), e57141. doi:
https://doi.org/10.1371/journal.pone.0057141
Dalmas, E., Venteclef, N., Caer, C., Poitou, C., Cremer, I., Aron-Wisnewsky, J., . . . Clément, K. J. D. (2014). T cell–derived IL-22 amplifies IL-1β–driven inflammation in human adipose tissue: Relevance to obesity and type 2 diabetes. 63(6), 1966-1977. doi:
https://doi.org/10.2337/db13-1511
Dudakov, J. A., Hanash, A. M., & van den Brink, M. R. J. A. r. o. i. (2015). Interleukin-22: immunobiology and pathology. 33, 747-785.
Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., . . . Beal, M. F. J. J. o. N. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. 20(12), 4389-4397. doi:
https://doi.org/10.1523/JNEUROSCI.20-12-04389.2000
Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. J. T. J. o. p. (2012). Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. 590(5), 1077-1084. doi:
https://doi.org/10.1113/jphysiol.2011.224725
Ikeuchi, H., Kuroiwa, T., Hiramatsu, N., Kaneko, Y., Hiromura, K., Ueki, K., . . . Rheumatism. (2005). Expression of interleukin‐22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. 52(4), 1037-1046. doi:
https://doi.org/10.1002/art.20965
Kalaki-Jouybari, F., Shanaki, M., Delfan, M., Gorgani-Firouzjae, S., Khakdan, S. J. A. o. p., & biochemistry. (2020). High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. 126(3), 242-249. doi:
https://doi.org/10.1080/13813455.2018.1510968
Keating, S. E., George, J., Johnson, N. A. J. E. r. o. g., & hepatology. (2015). The benefits of exercise for patients with non-alcoholic fatty liver disease. 9(10), 1247-1250. doi:
https://doi.org/10.1586/17474124.2015.1075392
Ki, S. H., Park, O., Zheng, M., Morales‐Ibanez, O., Kolls, J. K., Bataller, R., & Gao, B. J. H. (2010). Interleukin‐22 treatment ameliorates alcoholic liver injury in a murine model of chronic‐binge ethanol feeding: role of signal transducer and activator of transcription 3. 52(4), 1291-1300. doi:
https://doi.org/10.1002/hep.23837
Lejeune, D., Dumoutier, L., Constantinescu, S., Kruijer, W., Schuringa, J. J., & Renauld, J.-C. J. J. o. B. C. (2002). Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line: pathways that are shared with and distinct from IL-10. 277(37), 33676-33682. doi:
https://doi.org/10.1074/jbc.M204204200
Mo, R., Lai, R., Lu, J., Zhuang, Y., Zhou, T., Jiang, S., . . . Liu, Y. J. T. (2018). Enhanced autophagy contributes to protective effects of IL-22 against acetaminophen-induced liver injury. 8(15), 4170. doi:
https://doi.org/10.7150/thno.25798
Pasarica, M., Sereda, O. R., Redman, L. M., Albarado, D. C., Hymel, D. T., Roan, L. E., . . . Smith, S. R. J. D. (2009). Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. 58(3), 718-725. doi:
https://doi.org/10.2337/db08-1098
Pattamaprapanont, P., Muanprasat, C., Soodvilai, S., Srimaroeng, C., & Chatsudthipong, V. J. T. r. o. d. s. R. (2016). Effect of exercise training on signaling of interleukin-6 in skeletal muscles of type 2 diabetic rats. 13(2-3), 197. doi:
https://doi.org/10.1900/RDS.2016.13.197
Ramos, J. S., Dalleck, L. C., Stennett, R. C., Mielke, G. I., Keating, S. E., Murray, L., . . . Therapy. (2020). Effect of Different Volumes of Interval Training and Continuous Exercise on Interleukin-22 in Adults with Metabolic Syndrome: A Randomized Trial. 13, 2443. doi:
https://doi.org/10.2147/DMSO.S251567
Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. J. S. m. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. 45, 679-692. doi:
https://doi.org/10.1007/s40279-015-0321-z
Rangel, M., Renno, A. S., Oliveira-Junior, M. C., de Moraes, G., Mahler, J. d. A. C., Soares, C. R., . . . Belvisi, M. G. (2017). Involvement of STAT-3 in the Beneficial Effects of Aerobic Exercise in a Model of Smoke-Induced COPD. In: Eur Respiratory Soc.doi:
https://doi.org/10.1183/1393003.congress-2017.PA3728
Shabana, M., Ibrahim, H. M., Khadre, S. E., Elemam, M. G. J. T. J. o. B., & Zoology, A. (2012). Influence of rifampicin and tetracycline administration on some biochemical and histological parameters in albino rats. 65(5), 299-308. doi:
https://doi.org/10.1016/j.jobaz.2012.10.009
Slentz, C. A., Tanner, C. J., Bateman, L. A., Durheim, M. T., Huffman, K. M., Houmard, J. A., & Kraus, W. E. J. D. c. (2009). Effects of exercise training intensity on pancreatic β-cell function. 32(10), 1807-1811. doi:
https://doi.org/10.2337/dc09-0032
Steckling, F., Farinha, J., Santos, D., Bresciani, G., Mortari, J., Stefanello, S., . . . diabetes. (2016). High intensity interval training reduces the levels of serum inflammatory cytokine on women with metabolic syndrome. 124(10), 597-601.
Tjønna, A. E., Lee, S. J., Rognmo, Ø., Stølen, T. O., Bye, A., Haram, P. M., . . . Slørdahl, S. A. J. C. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. 118(4), 346-354. doi:
https://doi.org/10.1161/CIRCULATIONAHA.108.772822
Trenerry, M. K., Carey, K. A., Ward, A. C., Farnfield, M. M., & Cameron-Smith, D. J. R. r. (2008). Exercise-induced activation of STAT3 signaling is increased with age. 11(4), 717-724.
Trenerry, M. K., Della Gatta, P. A., Larsen, A. E., Garnham, A. P., Cameron‐Smith, D. J. M., & nerve. (2011). Impact of resistance exercise training on interleukin‐6 and JAK/STAT in young men. 43(3), 385-392. doi:
https://doi.org/10.1002/mus.21875
Woo, G. A., & O'Brien, C. J. C. i. l. d. (2012). Long-term management of alcoholic liver disease. 16(4), 763-781.
Wu, Y., Min, J., Ge, C., Shu, J., Tian, D., Yuan, Y., & Zhou, D. J. I. J. o. B. S. (2020). Interleukin 22 in liver injury, inflammation and cancer. 16(13), 2405. doi:
https://doi.org/10.7150/ijbs.38925
Yang, L., Zhang, Y., Wang, L., Fan, F., Zhu, L., Li, Z., . . . Huang, Z. J. J. o. h. (2010). Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. 53(2), 339-347. doi:
https://doi.org/10.1016/j.jhep.2010.03.004
Zhao, J., Qi, Y.-F., & Yu, Y.-R. J. A. o. h. (2021). STAT3: A key regulator in liver fibrosis. 21, 100224.
Zhao, J., Tian, Y., Xu, J., Liu, D., Wang, X., Zhao, B. J. L. i. h., & disease. (2011). Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats. 10(1), 1-7. doi:
https://doi.org/10.1186/1476-511X-10-225
Ziesché, E., Bachmann, M., Kleinert, H., Pfeilschifter, J., & Mühl, H. J. J. o. B. C. (2007). The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. 282(22), 16006-16015. doi:
https://doi.org/10.1074/jbc.M611040200