The effect of high-intensity interval training on IL-22 and STAT3 gene expression of liver tissue in steatosis animal model

Document Type : Original Article


1 M.Sc. Department of Physical Education and Sport Science Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran.

2 Assistant Professor, Department of Physical Education and Sport Science Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran.

3 PhD Student of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan , Iran.


Inflammation is a major component of almost all acute and chronic liver disorders, including non-alcoholic fatty liver disease. This study aimed to investigate the effect of high-intensity interval training on IL-22 and STAT3 gene expression of liver tissue in steatosis animal model. In this experimental study, 32 rats (weighing 200-250 gr) were selected and randomly divided into 4 groups including healthy control, fatty liver, HIIT and fatty liver + HIIT group. Rats were infected with fatty liver by oral tetracycline at a dose of 140 mg/kg (soluble in 2 ml of water) for 7 days. The HIIT exercise program performed on treadmill five sessions per week for 5 weeks. The IL-22 and STAT3 gene expressions in the liver tissue of samples were measured by Real Time PCR. Data were analyzed by One-way ANOVA and Tukey post hoc tests at significance level P <0.05. The results showed that the gene expression of IL-22 in liver tissue in HIIT group and fatty liver + HIIT was significantly lower than that in the fatty liver group (P = 0.001). Also, the gene expression of STAT3 in liver tissue in HIIT group and fatty liver + HIIT was significantly higher than that in the fatty liver group (P = 0.001). According to the results, the HIIT training program seems to help improve the liver steatosis.

What is already known on this subject?

Intense interval exercise led to a significant decrease in the expression of the IL-22 gene and a significant increase in the expression of the STAT3 gene in the steatosis animal model.



This article is taken from the master's thesis, and by this means, sincere thanks and appreciation are given to all the people who participated in this research.


Main Subjects

Alvarenga-Filho, H., Sacramento, P. M., Ferreira, T. B., Hygino, J., Abreu, J. E. C., Carvalho, S. R., . . . Bento, C. A. J. J. o. n. (2016). Combined exercise training reduces fatigue and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to neuromediators. 293, 91-99. doi:
Beavers, K. M., & Nicklas, B. J. J. F. i. b. (2011). Effects of lifestyle interventions on inflammatory markers in the metabolic syndrome. 3, 168. URL:
Begue, G., Douillard, A., Galbes, O., Rossano, B., Vernus, B., Candau, R., & Py, G. J. P. o. (2013). Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. 8(2), e57141. doi:
Carmo, R. F., Cavalcanti, M. S., & Moura, P. J. C. (2017). Role of Interleukin-22 in chronic liver injury. 98, 107-114. doi:
Dalmas, E., Venteclef, N., Caer, C., Poitou, C., Cremer, I., Aron-Wisnewsky, J., . . . Clément, K. J. D. (2014). T cell–derived IL-22 amplifies IL-1β–driven inflammation in human adipose tissue: Relevance to obesity and type 2 diabetes. 63(6), 1966-1977. doi:
Dudakov, J. A., Hanash, A. M., & van den Brink, M. R. J. A. r. o. i. (2015). Interleukin-22: immunobiology and pathology. 33, 747-785.
Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., . . . Beal, M. F. J. J. o. N. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. 20(12), 4389-4397. doi:
Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. J. T. J. o. p. (2012). Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. 590(5), 1077-1084. doi:
Ikeuchi, H., Kuroiwa, T., Hiramatsu, N., Kaneko, Y., Hiromura, K., Ueki, K., . . . Rheumatism. (2005). Expression of interleukin‐22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. 52(4), 1037-1046. doi:
Kalaki-Jouybari, F., Shanaki, M., Delfan, M., Gorgani-Firouzjae, S., Khakdan, S. J. A. o. p., & biochemistry. (2020). High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. 126(3), 242-249. doi:
Keating, S. E., George, J., Johnson, N. A. J. E. r. o. g., & hepatology. (2015). The benefits of exercise for patients with non-alcoholic fatty liver disease. 9(10), 1247-1250. doi:
Ki, S. H., Park, O., Zheng, M., Morales‐Ibanez, O., Kolls, J. K., Bataller, R., & Gao, B. J. H. (2010). Interleukin‐22 treatment ameliorates alcoholic liver injury in a murine model of chronic‐binge ethanol feeding: role of signal transducer and activator of transcription 3. 52(4), 1291-1300. doi:
Lejeune, D., Dumoutier, L., Constantinescu, S., Kruijer, W., Schuringa, J. J., & Renauld, J.-C. J. J. o. B. C. (2002). Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line: pathways that are shared with and distinct from IL-10. 277(37), 33676-33682. doi:
Mo, R., Lai, R., Lu, J., Zhuang, Y., Zhou, T., Jiang, S., . . . Liu, Y. J. T. (2018). Enhanced autophagy contributes to protective effects of IL-22 against acetaminophen-induced liver injury. 8(15), 4170. doi:
Niederreiter, L., & Tilg, H. J. L. R. (2018). Cytokines and fatty liver diseases. 2(1), 14-20. doi:
Pasarica, M., Sereda, O. R., Redman, L. M., Albarado, D. C., Hymel, D. T., Roan, L. E., . . . Smith, S. R. J. D. (2009). Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. 58(3), 718-725. doi:
Pattamaprapanont, P., Muanprasat, C., Soodvilai, S., Srimaroeng, C., & Chatsudthipong, V. J. T. r. o. d. s. R. (2016). Effect of exercise training on signaling of interleukin-6 in skeletal muscles of type 2 diabetic rats. 13(2-3), 197. doi:
Ramos, J. S., Dalleck, L. C., Stennett, R. C., Mielke, G. I., Keating, S. E., Murray, L., . . . Therapy. (2020). Effect of Different Volumes of Interval Training and Continuous Exercise on Interleukin-22 in Adults with Metabolic Syndrome: A Randomized Trial. 13, 2443. doi:
Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. J. S. m. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. 45, 679-692. doi:
Rangel, M., Renno, A. S., Oliveira-Junior, M. C., de Moraes, G., Mahler, J. d. A. C., Soares, C. R., . . . Belvisi, M. G. (2017). Involvement of STAT-3 in the Beneficial Effects of Aerobic Exercise in a Model of Smoke-Induced COPD. In: Eur Respiratory Soc.doi:
Shabana, M., Ibrahim, H. M., Khadre, S. E., Elemam, M. G. J. T. J. o. B., & Zoology, A. (2012). Influence of rifampicin and tetracycline administration on some biochemical and histological parameters in albino rats. 65(5), 299-308. doi:
Slentz, C. A., Tanner, C. J., Bateman, L. A., Durheim, M. T., Huffman, K. M., Houmard, J. A., & Kraus, W. E. J. D. c. (2009). Effects of exercise training intensity on pancreatic β-cell function. 32(10), 1807-1811. doi:
Steckling, F., Farinha, J., Santos, D., Bresciani, G., Mortari, J., Stefanello, S., . . . diabetes. (2016). High intensity interval training reduces the levels of serum inflammatory cytokine on women with metabolic syndrome. 124(10), 597-601.
Sun, X., & Mao, J. J. E. R. M. P. S. (2018). Role of Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in cardioprotection of exercise preconditioning. 22(15), 4975-4986. URL:
Tjønna, A. E., Lee, S. J., Rognmo, Ø., Stølen, T. O., Bye, A., Haram, P. M., . . . Slørdahl, S. A. J. C. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. 118(4), 346-354. doi:
Trenerry, M. K., Carey, K. A., Ward, A. C., Farnfield, M. M., & Cameron-Smith, D. J. R. r. (2008). Exercise-induced activation of STAT3 signaling is increased with age. 11(4), 717-724.
Trenerry, M. K., Della Gatta, P. A., Larsen, A. E., Garnham, A. P., Cameron‐Smith, D. J. M., & nerve. (2011). Impact of resistance exercise training on interleukin‐6 and JAK/STAT in young men. 43(3), 385-392. doi:
Woo, G. A., & O'Brien, C. J. C. i. l. d. (2012). Long-term management of alcoholic liver disease. 16(4), 763-781.
Wu, Y., Min, J., Ge, C., Shu, J., Tian, D., Yuan, Y., & Zhou, D. J. I. J. o. B. S. (2020). Interleukin 22 in liver injury, inflammation and cancer. 16(13), 2405. doi:
Yang, L., Zhang, Y., Wang, L., Fan, F., Zhu, L., Li, Z., . . . Huang, Z. J. J. o. h. (2010). Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. 53(2), 339-347. doi:
Yang, X., & Zheng, S. G. J. A. r. (2014). Interleukin-22: a likely target for treatment of autoimmune diseases. 13(6), 615-620. doi:
Zhao, J., Qi, Y.-F., & Yu, Y.-R. J. A. o. h. (2021). STAT3: A key regulator in liver fibrosis. 21, 100224.
Zhao, J., Tian, Y., Xu, J., Liu, D., Wang, X., Zhao, B. J. L. i. h., & disease. (2011). Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats. 10(1), 1-7. doi:
Ziesché, E., Bachmann, M., Kleinert, H., Pfeilschifter, J., & Mühl, H. J. J. o. B. C. (2007). The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. 282(22), 16006-16015. doi:
Volume 3, Issue 1
March 2023
Pages 22-28
  • Receive Date: 19 November 2022
  • Revise Date: 14 March 2023
  • Accept Date: 20 March 2023
  • First Publish Date: 20 March 2023