The effect of exercise training on neurotrophins in obese and overweight individuals: A systematic review and meta-analysis of randomized controlled trials

Document Type : Review Articles

Authors

1 Associate Professor of Exercise Physiology, Faculty of Sport Sciences, Allameh Tabataba’i University, Tehran, Iran.

2 M.Sc. of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran.

3 M.Sc. of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences,Tehran, Iran.

10.22034/jeoct.2022.357541.1051

Abstract

The purpose of this research was to conduct a systematic review and meta-analysis on the effect of exercise training on neurotrophin levels in obese and overweight individuals. The research evaluated the effect of exercise training on neurotrophins in the databases of PubMed, Science Direct, Scopus, and Google Scholar with identified keywords among papers published from 2000 onwards. After preliminary screening, full-text studies as well as critical evaluation of the papers meeting the inclusion criteria were analyzed. Finally, 12 studies entered systematic research, and 6 studies entered meta-analysis research. The results show that exercise training has an addictive effect on neurotrophin levels in obese individuals, but this addictive effect is not significant. The present meta-analyze shows that the brain -Derived Neurotrophic Factor (BDNF) response to exercise in obese individuals is increasing, but the increase is not significant (Difference in means = -0.42 pg/ml, P = 0.460). On the other hand, the Nerve Growth Factor (NGF) response to exercise is also increasing which is significant (Z = 2.12, P = 0.034).  Thus, it can be concluded that exercise cannot increase neurotrophins in obese and overweight individuals; although, further studies are needed in this area.

What is already known on this subject?

Up to now, numerous studies have considered the effect of exercise on neurotrophins in obese and overweight individuals. However, the results of these investigations are inconsistent.

 

What this study adds?

Exercise does not play a significant role in increasing neurotropic levels in obese and overweight individuals, and exercise-induced neurotropic responses are heterogeneous and very variable like most of the intervention studies.

Keywords

Main Subjects


Aarsland, D., Sardahaee, F. S., Anderssen, S., Ballard, C., & group, t. A. s. S. S. R. (2010). Is physical activity a potential preventive factor for vascular dementia? A systematic review. Aging & mental health, 14(4), 386-395. doi: https://doi.org/10.1080/13607860903586136
Adlard, P. A., Perreau, V. M., & Cotman, C. W. (2005). The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiology of aging, 26(4), 511-520. doi: https://doi.org/10.1016/j.neurobiolaging.2004.05.006
Aron, L., & Klein, R. (2011). Repairing the parkinsonian brain with neurotrophic factors. Trends in neurosciences, 34(2), 88-100.doi: https://doi.org/10.1016/j.tins.2010.11.001
Bansi, J., Bloch, W., Gamper, U., & Kesselring, J. (2013). Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Multiple Sclerosis Journal, 19(5), 613-621. doi: https://doi.org/10.1177/1352458512458605
Batouli, S. A. H., & Saba, V. (2017). At least eighty percent of brain grey matter is modifiable by physical activity: A review study. Behavioural brain research, 332, 204-217. doi: https://doi.org/10.1016/j.bbr.2017.06.002
Blundell, J., Gibbons, C., Caudwell, P., Finlayson, G., & Hopkins, M. (2015). Appetite control and energy balance: impact of exercise. Obesity reviews, 16, 67-76. doi: https://doi.org/10.1111/obr.12257
Bulló, M., Peeraully, M. R., Trayhurn, P., Folch, J., & Salas-Salvadó, J. (2007). Circulating nerve growth factor levels in relation to obesity and the metabolic syndrome in women. European Journal of Endocrinology, 157(3), 303-310. doi: https://doi.org/10.1530/EJE-06-0716
Cho, S. Y., & Roh, H. T. (2016). Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men. Journal of physical therapy science, 28(4), 1355-1358. doi: https://doi.org/10.1589/jpts.28.1355
Cho, S.-Y., So, W.-Y., & Roh, H.-T. (2016). Effects of aerobic exercise training and cranial electrotherapy stimulation on the stress-related hormone, the neurotrophic factor, and mood states in obese middle-aged women: a pilot clinical trial. Salud mental, 39(5), 249-256. doi: https://doi.org/10.17711/SM.0185-3325.2016.029
Cotman, C. W., & Berchtold, N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in neurosciences, 25(6), 295-301. doi: https://doi.org/10.1016/S0166-2236(02)02143-4
Crush, E. A., Frith, E., & Loprinzi, P. D. (2018). Experimental effects of acute exercise duration and exercise recovery on mood state. Journal of affective disorders, 229, 282-287. doi: https://doi.org/10.1016/j.jad.2017.12.092
Darvishi, M., & Eslami, R. (2020). Effects of aerobic exercise in manipulated environment on serum levels of BDNF, Irisin and Cathepsin B in healthy active men. Yafteh, 22(2). doi: http://eprints.lums.ac.ir/id/eprint/2372
Dinoff, A., Herrmann, N., Swardfager, W., & Lanctot, K. L. (2017). The effect of acute exercise on blood concentrations of brain‐derived neurotrophic factor in healthy adults: A meta‐analysis. European Journal of Neuroscience, 46(1), 1635-1646. doi: https://doi.org/10.1111/ejn.13603
Dinoff, A., Herrmann, N., Swardfager, W., Liu, C., Sherman, C., Chan, S., & Lanctôt, K. (2017). 996. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-derived Neurotrophic Factor (BDNF): A Meta-analysis. Biological Psychiatry, 81(10), S403. doi: https://doi.org/10.1016/j.biopsych.2017.02.723
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., & White, S. M. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the national academy of sciences, 108(7), 3017-3022.doi: https://doi.org/10.1073/pnas.1015950108
Eslami, R., Gharakhanlou, R., & Parnow, A.-H. (2018). The Response of Skeletal Muscle-Expressed Neurotrophins to Acute Resistance Exercise in Male Wistar Rats. Annals of Applied Sport Science, 6(2), 45-53. doi: http://dx.doi.org/10.29252/aassjournal.6.2.45
Eslami, R., Gharakhanlou, R., Kazemi, A., & Dabaghzadeh, R. (2015). Effect of a session resistance exercise on mRNA expression of NT-3 and TrkC proteins in soleus muscle of Wistar rats. Journal of Gorgan University of Medical Sciences, 17(3), 63-68. doi: http://goums.ac.ir/journal/article-1-2502-en.html
Eslami, R., Gharakhanlou, R., Kazemi, A., Dakhili, A. B., Sorkhkamanzadeh, G., & Sheikhy, A. (2016). Does endurance training compensate for neurotrophin deficiency following diabetic neuropathy? Iranian Red Crescent Medical Journal, 18(10). doi: https://doi.org/10.5812/ircmj.37757
Eslami, R., Gharakhanlou, R., Mowla, S. J., & Rajabi, H. (2013). Effect of one session resistance exercise on mRNA expression of NT4/5 and P75 proteins in slow and fast skeletal muscles of Wistar rats. Journal of Mazandaran University of Medical Sciences, 23(100), 74-82. doi: http://jmums.mazums.ac.ir/article-1-2191-en.html
Eslami, R., Gharakhanlou, R., Mowla, S. J., & Rajabi, H. (2013). Effect of one session resistance exercise on mRNA expression of NT4/5 and P75 proteins in slow and fast skeletal muscles of Wistar rats. Journal of Mazandaran University of Medical Sciences, 23(100), 74-82. doi: http://jmums.mazums.ac.ir/article-1-2191-en.html
Eslami, R., Sorkhkamanzadeh, G., Kazemi, A.-R., Gharakhanlou, R., & Banaifar, A.-a. (2015). Effect of 6-week endurance training on bdnf expression in motor root of spinal cord in rats with diabetic neuropathy. Journal of Mazandaran University of Medical Sciences, 25(124), 94-106. doi: http://jmums.mazums.ac.ir/article-1-5544-en.html
ESLAMI, R., VALIPOUR, D. V., & Alikarami, H. (2018). Serum Responses of Neurotrophic Factors to Carbohydrate Consumption during Aerobic Exercise in Adolescent Male Futsal Players. doi: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=754881
Farmer, J., Zhao, X., Van Praag, H., Wodtke, K., Gage, F., & Christie, B. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague–Dawley rats in vivo. Neuroscience, 124(1), 71-79. doi: https://doi.org/10.1016/j.neuroscience.2003.09.029
Fernandes, J., Arida, R. M., & Gomez-Pinilla, F. (2017). Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neuroscience & Biobehavioral Reviews, 80, 443-456. doi: https://doi.org/10.1016/j.neubiorev.2017.06.012
Glud, M., Christiansen, T., Larsen, L., Richelsen, B., & Bruun, J. (2019). Changes in circulating BDNF in relation to sex, diet, and exercise: a 12-week randomized controlled study in overweight and obese participants. Journal of obesity, 2019. doi: https://doi.org/10.1155/2019/4537274
Goldfield, G. S., Kenny, G. P., Prud'homme, D., Holcik, M., Alberga, A. S., Fahnestock, M., Cameron, J. D., Doucette, S., Hadjiyannakis, S., Tulloch, H., Tremblay, M. S., Walsh, J., Guerin, E., Gunnell, K. E., D'Angiulli, A., & Sigal, R. J. (2018). Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolescents with obesity: The hearty randomized controlled trial. Physiol Behav, 191, 138-145. https://doi.org/10.1016/j.physbeh.2018.04.026
Jacket, C. W. M. L. H. (1998). 24. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health, 52(6), 377-384. doi: http://dx.doi.org/10.1136/jech.52.6.377
Jiménez-Maldonado, A., de Álvarez-Buylla, E. R., Montero, S., Melnikov, V., Castro-Rodríguez, E., Gamboa-Domínguez, A., Rodríguez-Hernández, A., Lemus, M., & Murguía, J. M. (2014). Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner. PLoS One, 9(12), e115177. doi: https://doi.org/10.1371/journal.pone.0115177
Kazemi, A., Rahmati, M., Eslami, R., & Sheibani, V. (2017). Activation of neurotrophins in lumbar dorsal root probably contributes to neuropathic pain after spinal nerve ligation. Iranian journal of basic medical sciences, 20(1), 29. doi: https://doi.org/10.22038/ijbms.2017.8089
Keefe, K. M., Sheikh, I. S., & Smith, G. M. (2017). Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. International journal of molecular sciences, 18(3), 548. doi: https://doi.org/10.3390/ijms18030548
Kelley, G. A., & Kelley, K. S. (2017). Exercise and sleep: a systematic review of previous meta‐analyses. Journal of Evidence‐Based Medicine, 10(1), 26-36. doi: https://doi.org/10.1111/jebm.12236
Kim, T.-W., Baek, K.-W., Yu, H. S., Ko, I.-G., Hwang, L., & Park, J.-J. (2020). High-intensity exercise improves cognitive function and hippocampal brain-derived neurotrophic factor expression in obese mice maintained on high-fat diet. Journal of exercise rehabilitation, 16(2), 124-131. doi: https://doi.org/10.12965/jer.2040050.025
Lee, S. S., Yoo, J. H., Kang, S., Woo, J. H., Shin, K. O., Kim, K. B., Cho, S. Y., Roh, H. T., & Kim, Y. I. (2014). The effects of 12 weeks regular aerobic exercise on brain-derived neurotrophic factor and inflammatory factors in juvenile obesity and type 2 diabetes mellitus. Journal of physical therapy science, 26(8), 1199-1204. doi: https://doi.org/10.1589/jpts.26.1199
Loprinzi, P. D., & Frith, E. (2019). A brief primer on the mediational role of BDNF in the exercise‐memory link. Clinical physiology and functional imaging, 39(1), 9-14. doi: https://doi.org/10.1111/cpf.12522
Marosi, K., & Mattson, M. P. (2014). BDNF mediates adaptive brain and body responses to energetic challenges. Trends in Endocrinology & Metabolism, 25(2), 89-98. doi: https://doi.org/10.1016/j.tem.2013.10.006
Matthews, V. B., Åström, M.-B., Chan, M., Bruce, C. R., Krabbe, K., Prelovsek, O., Åkerström, T., Yfanti, C., Broholm, C., & Mortensen, O. H. (2009). Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 52(7), 1409-1418. doi: https://doi.org/10.1007/s00125-009-1364-1
Nazari, Y., Nikbakht, M., Habibi, A., & Shakeryan, S. (2016). Acute and Chronic Effects of Combined Training on Brain-Derived Neurotrophic Factor Levels and Its Association with Anthropometric Variables in Overweight Men. Annals of Military and Health Sciences Research, 14(4).  doi: https://doi.org/10.5812/amh.13037
Nourollahi, Z., & Eslami, R. (2019). Studying The Effect Of 8 Weeks Of Hict On Serum Levels Of Bdnf And Irisin And Body Weight In Elderly Women With Metabolic Syndrome. Iranian Journal of Diabetes and Metabolism, 18(4), 221-227. doi: http://ijdld.tums.ac.ir/article-1-5823-en.html
Numakawa, T., Suzuki, S., Kumamaru, E., Adachi, N., Richards, M., & Kunugi, H. (2010). BDNF function and intracellular signaling in neurons. Histology and histopathology. doi: http://hdl.handle.net/10201/42576
Pedersen, B. K. (2019). Physical activity and muscle–brain crosstalk. Nature Reviews Endocrinology, 15(7), 383-392. doi: https://doi.org/10.1038/s41574-019-0174-x.
Radak, Z., Suzuki, K., Higuchi, M., Balogh, L., Boldogh, I., & Koltai, E. (2016). Physical exercise, reactive oxygen species and neuroprotection. Free Radical Biology and Medicine, 98, 187-196. doi: https://doi.org/10.1016/j.freeradbiomed.2016.01.024
Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain‐derived neurotrophic factor from the brain during exercise. Experimental physiology, 94(10), 1062-1069. doi: https://doi.org/10.1113/expphysiol.2009.048512
Roh, H.-T., & So, W.-Y. (2017). The effects of aerobic exercise training on oxidant–antioxidant balance, neurotrophic factor levels, and blood–brain barrier function in obese and non-obese men. Journal of sport and health science, 6(4), 447-453. doi: https://doi.org/10.1016/j.jshs.2016.07.006
Roh, H.-T., Cho, S.-Y., & So, W.-Y. (2020). A cross-sectional study evaluating the effects of resistance exercise on inflammation and neurotrophic factors in elderly women with obesity. Journal of clinical medicine, 9(3), 842. doi: https://doi.org/10.3390/jcm9030842
Rosas-Vargas, H., Martínez-Ezquerro, J. D., & Bienvenu, T. (2011). Brain-derived neurotrophic factor, food intake regulation, and obesity. Archives of medical research, 42(6), 482-494.doi: https://doi.org/10.1016/j.arcmed.2011.09.005
Sandrini, L., Di Minno, A., Amadio, P., Ieraci, A., Tremoli, E., & Barbieri, S. S. (2018). Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: systematic review of literature and meta-analysis. International journal of molecular sciences, 19(8), 2281. doi: https://doi.org/10.3390/ijms19082281
Santos-Lozano, A., Pareja-Galeano, H., Sanchis-Gomar, F., Quindós-Rubial, M., Fiuza-Luces, C., Cristi-Montero, C., Emanuele, E., Garatachea, N., & Lucia, A. (2016). Physical activity and Alzheimer disease: a protective association. Mayo Clinic Proceedings, doi: https://doi.org/10.1016/j.mayocp.2016.04.024
Schulz, K.-H., Gold, S. M., Witte, J., Bartsch, K., Lang, U. E., Hellweg, R., Reer, R., Braumann, K.-M., & Heesen, C. (2004). Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. Journal of the neurological sciences, 225(1-2), 11-18.doi: https://doi.org/10.1016/j.jns.2004.06.009
Seifert, T., Brassard, P., Wissenberg, M., Rasmussen, P., Nordby, P., Stallknecht, B., Adser, H., Jakobsen, A. H., Pilegaard, H., & Nielsen, H. B. (2010). Endurance training enhances BDNF release from the human brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(2), R372-R377. doi: https://doi.org/10.1152/ajpregu.00525.2009
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., Browndyke, J. N., & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic medicine, 72(3), 239. doi: https://doi.org/10.1097/PSY.0b013e3181d14633
Steers, W. D., & Tuttle, J. B. (2006). Mechanisms of disease: the role of nerve growth factor in the pathophysiology of bladder disorders. Nature clinical practice Urology, 3(2), 101-110. doi: https://doi.org/10.1038/ncpuro0408
Szuhany, K. L., Bugatti, M., & Otto, M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of psychiatric research, 60, 56-64. doi: https://doi.org/10.1016/j.jpsychires.2014.10.003
Van Hoomissen, J. D., Chambliss, H. O., Holmes, P. V., & Dishman, R. K. (2003). Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Res, 974(1-2), 228-235. https://doi.org/10.1016/s0006-8993(03)02584-8
Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2003). Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience, 122(3), 647-657. doi: https://doi.org/10.1016/j.neuroscience.2003.08.001
Vaynman, S., Ying, Z., & Gómez‐Pinilla, F. (2004). Exercise induces BDNF and synapsin I to specific hippocampal subfields. Journal of neuroscience research, 76(3), 356-362. doi: https://doi.org/10.1002/jnr.20077
Vaynman, S., Ying, Z., & Gomez‐Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of neuroscience, 20(10), 2580-2590. doi: https://doi.org/10.1111/j.1460-9568.2004.03720.x
Walsh, J. J., D'Angiulli, A., Cameron, J. D., Sigal, R. J., Kenny, G. P., Holcik, M., Doucette, S., Alberga, A. S., Prud'homme, D., & Hadjiyannakis, S. (2018). Changes in the brain-derived neurotrophic factor are associated with improvements in diabetes risk factors after exercise training in adolescents with obesity: the HEARTY randomized controlled trial. Neural plasticity, 2018. doi: https://doi.org/10.1155/2018/7169583
Williams, J. W., Plassman, B. L., Burke, J., & Benjamin, S. (2010). Preventing Alzheimer's disease and cognitive decline. Evidence report/technology assessment(193), 1-727.doi: https://doi.org/10.7326/0003-4819-154-3-201102010-00014
Woo, J., Roh, H.-T., Park, C.-H., Yoon, B.-K., Kim, D.-Y., & Shin, K.-O. (2019). Effect of resistance training at different intensities on hippocampal neurotrophic factors and peripheral CCL11 levels in obese mice. Journal of the Korean Applied Science and Technology, 36(3), 876-884.doi: https://doi.org/10.12925/jkocs.2019.36.3.876
Woo, J.-H. (2012). The effects of exercise on neurotrophins, hepatocyte growth factor (HGF), and oxidative stress in obese children. Journal of Life Science, 22(5), 569-574. doi: https://doi.org/10.5352/JLS.2012.22.5.569
Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., Lin, J. D., Greenberg, M. E., & Spiegelman, B. M. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell metabolism, 18(5), 649-659. doi: https://doi.org/10.1016/j.cmet.2013.09.008
 
 
 
Volume 2, Issue 3
September 2022
Pages 112-122
  • Receive Date: 23 July 2022
  • Revise Date: 17 September 2022
  • Accept Date: 21 September 2022
  • First Publish Date: 21 September 2022