What is axoplasmic transport? Considering the role of exercise training: A mini review

Document Type : Review Articles


PHD Student of Exercise Physiology, Department of Sport Sciences, Shiraz University, Shiraz, Iran.



Like other cells in the body, nerve cells need many proteins and substances to maintain homeostasis. As we know, the transcription and translation of proteins and necessary cellular substances occurs in the cell nucleus. The nucleus of nerve cell is located in the cell body. Another part of the nerve cell is “Axon”, which has a long structure. Even in some nerve cells axon’s length reaches up to 1000 mm. On the other hand, all parts of the neuron need substances and proteins synthesized in nucleus locating in the cell body. Therefore, a mechanism is necessary to express the movement of materials from nucleus along the axon. The movement of materials along the axon is called ‘Axoplasmic Transport’. It seems that disturbances in axoplasmic transport can cause various neuronal problems. The purpose of this study is to investigate the mechanism of axoplasmic transport and its types; moreover, the possible effect of exercise on this transition will be discussed.

What is already known on this subject?

It seems that disturbances in axoplasmic transport can cause various neuronal problems.


What this study adds?

Some examples of how exercise has a positive effect on regulating axoplasmic transport are provided.


Main Subjects

Baas, P. W., & Mozgova, O. I. (2012). A novel role for retrograde transport of microtubules in the axon. Cytoskeleton (Hoboken), 69(7), 416-425.doi: https://doi.org/10.1002/cm.21013
Beijer, D., Sisto, A., Van Lent, J., Baets, J., & Timmerman, V. (2019). Defects in axonal transport in inherited neuropathies. J Neuromuscul Dis, 6(4), 401-419. doi: https://doi.org/10.3233/jnd-190427
Black, M. M. (2016). Axonal transport: The orderly motion of axonal structures. Methods Cell Biol, 131, 1-19. doi: https://doi.org/10.1016/bs.mcb.2015.06.001
Brady, S., Colman, D. R., & Brophy, P. (2014). Chapter 2 - Subcellular Organization of the Nervous System: Organelles and Their Functions. In J. H. Byrne, R. Heidelberger, & M. N. Waxham (Eds.), From Molecules to Networks (Third Edition) (pp. 23-52). Academic Press. doi: https://doi.org/https://doi.org/10.1016/B978-0-12-397179-1.00002-6
Brady, S. T. (1985). A novel brain ATPase with properties expected for the fast axonal transport motor. Nature, 317(6032), 73-75. doi: https://doi.org/10.1038/317073a0
Brown, A. (2000). Slow axonal transport: Stop and go traffic in the axon. Nature Reviews Molecular Cell Biology, 1(2), 153-156. doi: https://doi.org/10.1038/35040102
Brown, A. (2003). Axonal transport of membranous and nonmembranous cargoes: A unified perspective. J Cell Biol, 160(6), 817-821. doi: https://doi.org/10.1083/jcb.200212017
Carlson, B. M. (2019). Chapter 1 - Cells. In B. M. Carlson (Ed.), The Human Body (pp. 1-25). Academic Press. doi: https://doi.org/https://doi.org/10.1016/B978-0-12-804254-0.0006-01
Cason, S. E., & Holzbaur, E. L. F. (2022). Selective motor activation in organelle transport along axons. Nat Rev Mol Cell Biol. doi: https://doi.org/10.1038/s41580-022-00491-w
Cho, A. Y. C., Roque, V., & Goldman, C. (2020). Fast and slow axonal transport: A unified approach based on cargo and molecular motor coupled dynamics. Phys Rev E, 102(3-1), 032410. doi: https://doi.org/10.1103/PhysRevE.102.032410
Dahlberg, J. E., Lund, E., & Goodwin, E. B. (2003). Nuclear translation: What is the evidence? Rna, 9(1) , 1-8. doi: https://doi.org/10.1261/rna.2121703
De Vos, K. J., & Hafezparast, M. (2017). Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis, 105, 283-299. doi: https://doi.org/10.1016/j.nbd.2017.02.004
Duncan, J., & Goldstein, L. (2006). The genetics of axonal transport and axonal transport disorders. PLoS Genet, 2, e124. doi: https://doi.org/10.1371/journal.pgen.0020124
Farmer, K. L. (2010). The effect of volunatary exercise on neuropathic pain. doi: http://hdl.handle.net/1808/7434
Ganguly, A., & Roy, S. (2022). Imaging diversity in slow axonal transport. Methods Mol Biol, 2431, 163-179. doi: https://doi.org/10.1007/978-1-0716-1990-2_8
Gharakhanlou, R., Chadan, S., & Gardiner, P. (1999). Increased activity in the form of endurance training increases calcitonin gene-related peptide content in lumbar motoneuron cell bodies and in sciatic nerve in the rat. Neuroscience, 89(4), 1229-1239. doi:  https://doi.org/https://doi.org/10.1016/S0306-4522(98)00406-0
Gibbs, K. L., Greensmith, L., & Schiavo, G. (2015). Regulation of axonal transport by protein kinases. Trends Biochem Sci, 40(10), 597-610. doi: https://doi.org/10.1016/j.tibs.2015.08.003
GM, C. (2000). The cell: A molecular approach. doi: https://www.ncbi.nlm.nih.gov/books/NBK9932/
Golbar, S., Gharekhanlu, R., Kordi, M., & Khazani, A. (2018). Effect of Endurance exercise training on kinesin - 5 and dynein motor proteins in sciatic nerves of male wistar rats with diabetic neuropathy. International journal of Sport Studies for Health, In Press. doi:  https://doi.org/10.5812/intjssh.67758
Grafstein, B., & Forman, D. S. (1980). Intracellular transport in neurons. Physiol Rev, 60(4), 1167-1283. doi: https://doi.org/10.1152/physrev.1980.60.4.1167
Guedes-Dias, P., & Holzbaur, E. L. F. (2019). Axonal transport: Driving synaptic function. Science, 366(6462), eaaw9997. doi: https://doi.org/doi:10.1126/science.aaw9997
Guillaud, L., El-Agamy, S. E., Otsuki, M., & Terenzio, M. (2020). Anterograde axonal transport in neuronal homeostasis and disease. Front Mol Neurosci, 13, 556175. doi: https://doi.org/10.3389/fnmol.2020.556175
Guo, W., Stoklund Dittlau, K., & Van Den Bosch, L. (2020). Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Seminars in Cell & Developmental Biology, 99, 133-150. doi:  https://doi.org/https://doi.org/10.1016/j.semcdb.2019.07.010
Sleigh, J.N. (2020). Axonal transport: The delivery system keeping nerve cells alive. Young Minds. doi: https://doi.org/10.3389/frym.2020.00012
Jasmin, B. J., Lavoie, P. A., & Gardiner, P. F. (1987). Fast axonal transport of acetylcholinesterase in rat sciatic motoneurons is enhanced following prolonged daily running, but not following swimming. Neurosci Lett, 78(2), 156-160. doi: https://doi.org/10.1016/0304-3940(87)90625-2
Jasmin, B. J., Lavoie, P. A., & Gardiner, P. F. (1988). Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats. Am J Physiol, 255(6 Pt 1), C731-736. doi:  https://doi.org/10.1152/ajpcell.1988.255.6.C731
Khatib, T. Z., Osborne, A., Yang, S., Ali, Z., Jia, W., Manyakin, I., . . . Martin, K. R. (2021). Receptor-ligand supplementation via a self-cleaving 2A peptide–based gene therapy promotes CNS axonal transport with functional recovery. Science Advances, 7(14), eabd2590. doi: https://doi.org/doi:10.1126/sciadv.abd2590
Kuznetsov, I. A., & Kuznetsov, A. V. (2022). Bidirectional, unlike unidirectional transport, allows transporting axonal cargos against their concentration gradient. J Theor Biol, 546, 111161. doi: https://doi.org/10.1016/j.jtbi.2022.111161
Lasek, R. J. (1980). Axonal transport: A dynamic view of neuronal structures. Trends in Neurosciences, 3(4), 87-91.
Maday, S., Twelvetrees, A. E., Moughamian, A. J., & Holzbaur, E. L. (2014). Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron, 84(2), 292-309. doi: https://doi.org/10.1016/j.neuron.2014.10.019
Mehta, A. R., Chandran, S., & Selvaraj, B. T. (2022). Assessment of mitochondrial trafficking as a surrogate for fast axonal transport in human induced pluripotent stem cell-derived spinal motor neurons. Methods Mol Biol, 2431, 311-322. doi: https://doi.org/10.1007/978-1-0716-1990-2_16
Momenzadeh, S., Zamani, S., Dehghan, F., Barreiro, C., & Jami, M. S. (2021). Comparative proteome analyses highlight several exercise-like responses of mouse sciatic nerve after IP injection of irisin. Eur J Neurosci, 53(10), 3263-3278. doi:  https://doi.org/10.1111/ejn.15202
Morfini, G. A., Burns, M. R., Stenoien, D. L., & Brady, S. T. (2012). In S. T. Brady, G. J. Siegel, R. W. Albers, & D. L. Price (Eds.), Basic Neurochemistry (Eighth Edition) (pp. 146-164). Academic Press. doi: https://doi.org/https://doi.org/10.1016/B978-0-12-374947-5.00008-0
Prior, R., Van Helleputte, L., Benoy, V., & Van Den Bosch, L. (2017). Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis, 105, 300-320. doi: https://doi.org/10.1016/j.nbd.2017.02.009
Roy, S. (2014). Seeing the unseen: The hidden world of slow axonal transport. Neuroscientist, 20(1), 71-81. doi: https://doi.org/10.1177/1073858413498306
Roy, S. (2020). Finding order in slow axonal transport. Curr Opin Neurobiol, 63, 87-94. doi:  https://doi.org/10.1016/j.conb.2020.03.015
Sickles, D. W., Stone, J. D., & Friedman, M. A. (2002). Fast axonal transport: a site of acrylamide neurotoxicity? Neurotoxicology, 23(2), 223-251. doi: https://doi.org/10.1016/s0161-813x(02)00025-6
Singleton, J. R., Foster-Palmer, S., & Marcus, R. L. (2022). Exercise as treatment for neuropathy in the setting of diabetes and prediabetic metabolic syndrome: A review of animal models and human trials. Current Diabetes Reviews, 18(5), 123-155. doi: https://doi.org/10.2174/1573399817666210923125832
Takenaka, T., Hiruma, H., Hori, H., Hashimoto, Y., Ichikawa, T., & Kawakami, T. (2003). Fatty acids as an energy source for the operation of axoplasmic transport. Brain Res, 972(1-2), 38-43. doi: https://doi.org/10.1016/s0006-8993(03)02481-8
Takenaka, T., Kawakami, T., Hikawa, N., Bandou, Y., & Gotoh, H. (1992). Effect of neurotransmitters on axoplasmic transport: Acetylcholine effect on superior cervical ganglion cells. Brain Res, 588(2), 212-216.
Takenaka, T., Kawakami, T., Hori, H., & Bandou, Y. (1994). Effect of neurotransmitters on axoplasmic transport: how adrenaline affects superior cervical ganglion cells. Brain Res, 643(1), 81-85. doi: https://doi.org/https://doi.org/10.1016/0006-8993(94)90011-6
Tao, Y., Hori, H., Kawakami, T., Hashimoto, Y., Takenaka, T., & Ishikawa, Y. (1999). Effects of glucagon on axoplasmic transport in mouse superior cervical ganglion cells. Neuroreport, 10(11), 2401-2404. doi: https://doi.org/10.1097/00001756-199908020-00033
Tsukita, S., & Ishikawa, H. (1980). The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol, 84(3), 513-530. doi: https://doi.org/10.1083/jcb.84.3.513
Twelvetrees, A. E., Pernigo, S., Sanger, A., Guedes-Dias, P., Schiavo, G., Steiner, R. A., . . . Holzbaur, E. L. (2016). The Dynamic localization of cytoplasmic dynein in neurons is driven by kinesin-1. Neuron, 90(5), 1000-1015. doi: https://doi.org/10.1016/j.neuron.2016.04.046
Vale, R. D., Reese, T. S., & Sheetz, M. P. (1985). Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell, 42(1), 39-50. doi: https://doi.org/10.1016/s0092-8674(85)80099-4
Vale, R. D., Schnapp, B. J., Reese, T. S., & Sheetz, M. P. (1985). Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell, 40(2), 449-454. https://doi.org/10.1016/0092-8674(85)90159-x
Vasudevan, A., & Koushika, S. P. (2020). Molecular mechanisms governing axonal transport: a C. elegans perspective. J Neurogenet, 34(3-4), 282-297. doi: https://doi.org/10.1080/01677063.2020.1823385
 Weiss, P., & Hiscoe, H. B. (1948). Experiments on the mechanism of nerve growth. J Exp Zool, 107(3), 315-395. doi: https://doi.org/10.1002/jez.1401070302
Woehlke, G., & Schliwa, M. (2000). Walking on two heads: The many talents of kinesin. Nature Reviews Molecular Cell Biology, 1(1), 50-58. doi: https://doi.org/10.1038/35036069
Yamashita, N. (2019). Retrograde signaling via axonal transport through signaling endosomes. J Pharmacol Sci, 141(2)91-96. doi: https://doi.org/10.1016/j.jphs.2019.10.001
Volume 2, Issue 3
September 2022
Pages 123-131
  • Receive Date: 26 July 2022
  • Revise Date: 08 September 2022
  • Accept Date: 12 September 2022
  • First Publish Date: 12 September 2022