The effect of high intensity interval training on CTGF and RXFP1 genes expression of heart tissue and SGPT liver enzyme in rats with fatty liver

Document Type : Original Article


1 Department of Exercise physiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran.

2 Assistant Professor of Exercise Physiology, Department of Exercise Physiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran.


This study investigated the effect of high intensity interval training on CTGF and RXFP1 genes expression of heart tissue and SGPT liver enzyme in rats with fatty liver. 48 male Wistar rats (200-250 g) were divided randomly into the following 6 groups: Healthy base group (BH), base Steatosis group (BS), Healthy HIIT group (HIIT), Steatosis HIIT group (SHIIT), Healthy control group (CH), control Steatosis group (CS). Rats in the fatty liver group received oral tetracycline daily for two weeks. Rats in the training groups were also trained for 5 weeks / five days. Both BS and BH groups sacrificed at the end of the 2nd week. CS and training groups sacrificed at the end of 5th week and heart tissue samples were taken to examine CTGF, RXFP1, and SGPT genes expression. The results of the study showed that he amounts of SGPT in BS and CS groups were meaningfully higher than those in the other 4 groups. The level of this enzyme in SHIIT and HIIT groups was significantly lower than that in the fatty liver groups. The RXFP1 gene expression in CS, BS and SHIIT groups were significantly higher than those in the other 3 groups. Thus, it can be claimed that fatty liver increased cardiac fibrosis factors but by reducing these factors HIIT was able to prevent the process of cardiac fibrosis from liver Steatosis; therefore, HITT can be used as a new method to Cardiac rehabilitation of patients.

What is already known on this subject?

Studies have been performed on the relationship between fatty liver and arthrosclerosis, the results of which indicate the relationship between the Non-alcoholic fatty liver and arthrosclerosis of coronary artery disease.


What this study adds?

HIIT training, performed in a short time, was able to reduce the heart fibrosis caused by liver steatosis by reducing these factors.


Main Subjects

Adham, I. M., Burkhardt, E., Benahmed, M., & Engel, W. (1993). Cloning of a cDNA for a novel insulin-like peptide of the testicular Leydig cells. J Biol Chem, 268(35), 26668-26672.
Ahmed, M. S., Gravning, J., Martinov, V. N., von Lueder, T. G., Edvardsen, T., Czibik, G., . . . Attramadal, H. (2011). Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol, 300(4), H1291-1302. doi:
Alleva, D. G., Kaser, S. B., Monroy, M. A., Fenton, M. J., & Beller, D. I. (1997). IL-15 functions as a potent autocrine regulator of macrophage proinflammatory cytokine production: evidence for differential receptor subunit utilization associated with stimulation or inhibition. J Immunol, 159(6), 2941-2951.
Aoi, W., Naito, Y., Hang, L. P., Uchiyama, K., Akagiri, S., Mizushima, K., & Yoshikawa, T. (2011). Regular exercise prevents high-sucrose diet-induced fatty liver via improvement of hepatic lipid metabolism. Biochem Biophys Res Commun, 413(2), 330-335. doi:
Baccari, M. C., Bani, D., Bigazzi, M., & Calamai, F. (2004). Influence of relaxin on the neurally induced relaxant responses of the mouse gastric fundus. Biol Reprod, 71(4), 1325-1329. doi:
Baccari, M. C., Nistri, S., Vannucchi, M. G., Calamai, F., & Bani, D. (2007). Reversal by relaxin of altered ileal spontaneous contractions in dystrophic (mdx) mice through a nitric oxide-mediated mechanism. Am J Physiol Regul Integr Comp Physiol, 293(2), R662-668. doi:
Banerjee, A., Shen, P. J., Ma, S., Bathgate, R. A., & Gundlach, A. L. (2010). Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology, 58(1), 145-155. doi:
Bani-Sacchi, T., Bigazzi, M., Bani, D., Mannaioni, P. F., & Masini, E. (1995). Relaxin-induced increased coronary flow through stimulation of nitric oxide production. Br J Pharmacol, 116(1), 1589-1594. doi:
Bathgate, R. A., Halls, M. L., van der Westhuizen, E. T., Callander, G. E., Kocan, M., & Summers, R. J. (2013). Relaxin family peptides and their receptors. Physiol Rev, 93(1), 405-480. doi:
Bryant-Greenwood, G. D., Rutanen, E. M., Partanen, S., Coelho, T. K., & Yamamoto, S. Y. (1993). Sequential appearance of relaxin, prolactin and IGFBP-1 during growth and differentiation of the human endometrium. Mol Cell Endocrinol, 95(1-2), 23-29. doi:
Chaqour, B. (2020). Caught between a "Rho" and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J Cell Commun Signal, 14(1), 21-29. doi:
Chen, M. M., Lam, A., Abraham, J. A., Schreiner, G. F., & Joly, A. H. (2000). CTGF expression is induced by TGF- beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol, 32(10), 1805-1819. doi:
Danielson, L. A., Kercher, L. J., & Conrad, K. P. (2000). Impact of gender and endothelin on renal vasodilation and hyperfiltration induced by relaxin in conscious rats. Am J Physiol Regul Integr Comp Physiol, 279(4), R1298-1304. doi:
Deswal, A., Petersen, N. J., Feldman, A. M., Young, J. B., White, B. G., & Mann, D. L. (2001). Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation, 103(16), 2055-2059. doi:
Dorn, L. E., Petrosino, J. M., Wright, P., & Accornero, F. (2018). CTGF/CCN2 is an autocrine regulator of cardiac fibrosis. J Mol Cell Cardiol, 121, 205-211. doi:
 Faienza, M. F., Chiarito, M., Molina-Molina, E., Shanmugam, H., Lammert, F., Krawczyk, M., . . . Portincasa, P. (2020). Childhood obesity, cardiovascular and liver health: a growing epidemic with age. World Journal of Pediatrics, 16(5), 438-445. doi:
Fawkner, S., & Armstrong, N. (2003). Oxygen uptake kinetic response to exercise in children. Sports Med, 33(9), 651-669. doi:
Feldstein, A. E. (2010). Novel insights into the pathophysiology of nonalcoholic fatty liver disease. Semin Liver Dis, 30(4), 391-401. doi:
Gaudio, E., Nobili, V., Franchitto, A., Onori, P., & Carpino, G. (2012). Nonalcoholic fatty liver disease and atherosclerosis. Intern Emerg Med, 7 Suppl 3, S297-305. doi:
Ghosh, A. K. (2002). Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood), 227(5), 301-314. doi:
Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab, 39(3), 409-412. doi:
Gressner, O. A., & Gressner, A. M. (2008). Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int, 28(8), 1065-1079. doi:
Gressner, O. A., Lahme, B., Demirci, I., Gressner, A. M., & Weiskirchen, R. (2007). Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. J Hepatol, 47(5), 699-710.
Guo-qiang, Y., Yong-sheng, Q., & Peng, P. (2020). The effect and mechanism of aerobic training on cardiac fibrosis in spontaneously hypertensive rats. Tianjin Medicin Journal, Vol. 48 (2), 100-104. doi:
Hayden, A. L. (2009). The role of relaxin in the regulation of human liver and kidney fibrosis University of Southampton]. EThOS. doi:
Heeg, M. H., Koziolek, M. J., Vasko, R., Schaefer, L., Sharma, K., Müller, G. A., & Strutz, F. (2005). The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int, 68(1), 96-109. doi:
Heringlake, M., Kox, T., Poeling, J., Klaus, S., Hanke, T., Franz, N., . . . Bahlmann, L. (2009). The effects of physical exercise on plasma levels of relaxin, NTproANP, and NTproBNP in patients with ischemic heart disease. Eur J Med Res, 14(3), 106-112. doi:
Jamali, R., Khonsari, M., Merat, S., Khoshnia, M., Jafari, E., Bahram Kalhori, A., . . . Pourshams, A. (2008). Persistent alanine aminotransferase elevation among the general Iranian population: prevalence and causes. World J Gastroenterol, 14(18), 2867-2871. doi:
JINNIN, M. (2010). Mechanisms of skin fibrosis in systemic sclerosis. The Journal of Dermatology, 37(1), 11-25. doi:
 Jones, A. M., Krustrup, P., Wilkerson, D. P., Berger, N. J., Calbet, J. A., & Bangsbo, J. (2012). Influence of exercise intensity on skeletal muscle blood flow, O2 extraction and O2 uptake on-kinetics. J Physiol, 590(17), 4363-4376. doi:
Keating, S. E., Hackett, D. A., George, J., & Johnson, N. A. (2012). Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol, 57(1), 157-166. doi:
Krüger, S., Graf, J., Merx, M. W., Stickel, T., Kunz, D., Hanrath, P., & Janssens, U. (2004). Relaxin kinetics during dynamic exercise in patients with chronic heart failure. Eur J Intern Med, 15(1), 54-56. doi:
Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med, 32(1), 53-73. doi:
Lee, K. C., Hsieh, Y. C., Chan, C. C., Sun, H. J., Huang, Y. H., Hou, M. C., & Lin, H. C. (2019). Human relaxin-2 attenuates hepatic steatosis and fibrosis in mice with non-alcoholic fatty liver disease. Lab Invest, 99(8), 1203-1216. doi:
Meyer, P., Gayda, M., Juneau, M., & Nigam, A. (2013). High-intensity aerobic interval exercise in chronic heart failure. Curr Heart Fail Rep, 10(2), 130-138. doi:
Nistri, S., Chiappini, L., Sassoli, C., & Bani, D. (2003). Relaxin inhibits lipopolysaccharide-induced adhesion of neutrophils to coronary endothelial cells by a nitric oxide-mediated mechanism. FASEB J, 17(14), 2109-2111. doi:
Patil, R., & Sood, G. K. (2017). Non-alcoholic fatty liver disease and cardiovascular risk. World J Gastrointest Pathophysiol, 8(2), 51-58. doi:
Richter, E. A., & Ruderman, N. B. (2009). AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J, 418(2), 261-275. doi:
Roozbayani, M., Peeri, M., Agha-Alinejad, H., & Azarbayjani, M. A. (2016). Effect of Continues Training and High Intensity Interval Training on miR-29a and CTGF Gene Expression in Male Wistar Diabetic Rats’ Heart Tissue [Research]. Iranian Journal of Diabetes and Obesity, 8(3), 142-150. doi:
Ruiz, J. R., Labayen, I., Ortega, F. B., Moreno, L. A., Rodriguez, G., Breidenassel, C., . . . Sjöström, M. (2014). Physical activity, sedentary time, and liver enzymes in adolescents: the HELENA study. Pediatr Res, 75(6), 798-802. doi:
Samuel, C. S. (2005). Relaxin: antifibrotic properties and effects in models of disease. Clin Med Res, 3(4), 241-249. doi:
Samuel, C. S., Unemori, E. N., Mookerjee, I., Bathgate, R. A., Layfield, S. L., Mak, J., . . . Du, X. J. (2004). Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology, 145(9), 4125-4133. doi:
Sarwar, M., Du, X. J., Dschietzig, T. B., & Summers, R. J. (2017). The actions of relaxin on the human cardiovascular system. Br J Pharmacol, 174(10), 933-949. doi:
Schreckenberg, R., Horn, A. M., da Costa Rebelo, R. M., Simsekyilmaz, S., Niemann, B., Li, L., . . . Schlüter, K. D. (2017). Effects of 6-months' Exercise on Cardiac Function, Structure and Metabolism in Female Hypertensive Rats-The Decisive Role of Lysyl Oxidase and Collagen III. Front Physiol, 8, 556. doi:
Sciarretta, S., Paneni, F., Palano, F., Chin, D., Tocci, G., Rubattu, S., & Volpe, M. (2009). Role of the renin-angiotensin-aldosterone system and inflammatory processes in the development and progression of diastolic dysfunction. Clin Sci (Lond), 116(6), 467-477. doi:
Shi-Wen, X., Leask, A., & Abraham, D. (2008). Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev, 19(2), 133-144. doi:
Sookoian, S., & Pirola, C. J. (2008). Non-alcoholic fatty liver disease is
strongly associated with carotid atherosclerosis: a systematic review. J Hepatol, 49(4), 600-607. doi:
 Szabó, Z., Magga, J., Alakoski, T., Ulvila, J., Piuhola, J., Vainio, L., . . Kerkelä, R. (2014). Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure. Hypertension, 63(6), 1235-1240. doi:
Tahereh Fakharian, Shima Heydari, Ghodsiyeh Azarkar, & bakhsh, A. r. E. (2017). The role of non- alcoholic fatty liver disease (NAFLD)in the occurrence of CVDs through measuring carotid intima-media thickness. Birjand University of Medical Sciences, 24(1), 63-72. ten Dijke, P., & Arthur, H. M. (2007). Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol, 8(11), 857-869. doi:
Thoma, C., Day, C. P., & Trenell, M. I. (2012). Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol, 56(1), 255-266. doi:
Tong, Z., Chen, R., Alt, D. S., Kemper, S., Perbal, B., & Brigstock, D. R. (2009). Susceptibility to liver fibrosis in mice expressing a connective tissue growth factor transgene in hepatocytes. Hepatology, 50(3), 939-947. doi:
Varga, J., & Pasche, B. (2009). Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol, 5(4), 200-206. doi:
Villegas, R., Xiang, Y. B., Elasy, T., Cai, Q., Xu, W., Li, H., . . . Shu, X. O. (2011). Liver enzymes, type 2 diabetes, and metabolic syndrome in middle-aged, urban Chinese men. Metab Syndr Relat Disord, 9(4), 305-311. doi:
Wahab, N. A., Yevdokimova, N., Weston, B. S., Roberts, T., Li, X. J., Brinkman, H., & Mason, R. M. (2001). Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J, 359(Pt 1), 77-87. doi:
Wang, S. Q., Li, D., & Yuan, Y. (2019). Long-term moderate intensity exercise alleviates myocardial fibrosis in type 2 diabetic rats via inhibitions of oxidative stress and TGF-β1/Smad pathway. J Physiol Sci, 69(6), 861-873. doi:
Wu, C. K., Wang, Y. C., Lee, J. K., Chang, S. N., Su, M. Y., Yeh, H. M., . . . Tsai, C. T. (2014). Connective tissue growth factor and cardiac diastolic dysfunction: human data from the Taiwan diastolic heart failure registry and molecular basis by cellular and animal models. Eur J Heart Fail, 16(2), 163-172. doi:
Yang, H. L., Hsieh, P. L., Hung, C. H., Cheng, H. C., Chou, W. C., Chu, P. M., . . . Tsai, K. L. (2020). Early Moderate Intensity Aerobic Exercise Intervention Prevents Doxorubicin-Caused Cardiac Dysfunction Through Inhibition of Cardiac Fibrosis and Inflammation. Cancers (Basel), 12(5). doi: