High intensity interval exercise alters muscle IL-18, FNDC5, and hepatic MMPs in animal model of steatosis: Evidence of skeletal muscle—liver crosstalk

Document Type : Original Article

Authors

1 Young Researchers and Elite Club, Sciences and Researches Branch (Oloom Tahghighat Branch), Islamic Azad University, Tehran, Iran

2 Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran.

3 Department of Exercise Physiology, Faculty of Physical Education and sport sciences, University of Tehran, Tehran, Iran

4 - KITE Research, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada - Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario

5 Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

6 Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.

Abstract

Steatosis is a common disease worldwide. High intensity interval training (HIIT) may ameliorate steatosis, possibly through interactions between skeletal muscle and liver; however, mechanistic pathways are poorly understood. We aimed to determine potential mechanisms involved in skeletal muscle-liver crosstalk by measuring the gene expression of skeletal muscle interlukin-18 (IL-18) and fibronectin type III domain-containing protein 5 (FNDC5) and hepatic matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9). Thirty-two adult male Wistar rats were randomly divided into four group including normal control (C), high intensity interval training (HIIT), hepatic steatosis+ HIIT (HS+HIIT) and sedentary hepatic steatosis (SHS). HIIT was performed 5 days per week for 5 weeks. Tetracycline (140 mg/kg) was administered by gavage for 7 days to induce NAFLD. We found that HIIT and HS+HIIT increased skeletal muscle expression of FNDC5 relative to SHS group but the increase was attenuated in HS+HIIT. SHS increased muscle IL-18 expression relative to HIIT, HS+HIIT, and C. Expression of hepatic MMP-2 and MMP-9 increased significantly in SHS in comparison with C. There was a significant increase in MMP-9 in HIIT compared with C. Moreover, hepatic MMP-9 expression decreased in both HIIT and SHS+HIIT relative to SHS. MMP-2 decreased significantly in HIIT compared with SHS. Furthermore, muscle IL-18 gene expression was significantly associated with gene expression of hepatic MMP-2 and MMP-9. We conclude that HIIT-induced alteration of skeletal muscle-derived myokines may alter the gene expression of hepatic matrix metalloproteinases, collagenases involved in pathogenesis of liver diseases. Furthermore, steatosis may possibly influence myokine profiles in skeletal muscle. Accordingly, skeletal muscle-liver crosstalk is possibly targeted by HIIT and steatosis in terms of therapeutic approach.

What is already known on this subject?

Exercise training including HIIT improves NAFLD. However, potential HIIT-induced mechanisms, including skeletal muscle-liver crosstalk, are poorly understood.

 

What this study adds?

HIIT may induce skeletal muscle to signal to the liver, improving hepatic steatosis. The outcomes of the present study not only add to body literature of organ-organ crosstalk in chronic disease prevention and treatment, but also help to understand how HIIT-induced signals (myokines) impact the liver, and ultimately mitigate steatosis progression.

Keywords

Main Subjects


Abe, K., Ikeda, T., Wake, K., Sato, T., Sato, T., Inoue, H. (2008). Glycyrrhizin prevents of lipopolysaccharide/D-galactosamine-induced liver injury through down-regulation of matrix metalloproteinase-9 in mice. The Journal of Pharmacy and Pharmacology, 60(1), 91-97. doi: https://doi.org/10.1211/jpp.60.1.0012
Arias-Loste, M. T., Ranchal, I., Romero-Gómez, M., & Crespo, J. (2014). Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. International Journal of Molecular Sciences,15(12), 23163-23178. doi: https://doi.org/10.3390/ijms151223163
Brunt, E. M., Janney, C. G., Di Bisceglie, A. M., Neuschwander-Tetri, B. A., & Bacon, B. R. (1999). Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions. The American Journal of Gastroenterology, 94(9), 2467-2474. doi: https://doi.org/10.1111/j.1572-0241.1999.01377.x.
Chtourou, Y., Fetoui, H., Jemai, R., Slima, A. B., Makni, M., & Gdoura, R. (2015). Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway. European Journal of Pharmacology, 746, 96-105. doi: https://doi.org/10.1016/j.ejphar.2014.10.027
Delphan, M., Torabi , A., Delfan , M., & Delfan , N. (2021). Crosstalk between skeletal muscle and adipose tissue: The possible preventive and therapeutic mechanistic target of exercise-a systematic review. Paper presented at the 1th International Sport Sciences & Interdisciplinary Research/semi virtual. University of Tehran, Tehran, Iran. 1(1):137.  doi: https://doi.org/10.22059/sportcongr.2021.587
Garneau, L., Parsons, S. A., Smith, S. R., Mulvihill, E. E., Sparks, L. M., & Aguer, C. (2020). Plasma myokine concentrations after acute exercise in non-obese and obese sedentary women. Front. Physiol.,  11, 18. doi: https://doi.org/10.3389/fphys.2020.00018
Kalaki-Jouybari, F., Shanaki, M., Delfan, M., Gorgani-Firouzjae, S., Khakdan, S. (2020). High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. Archives of Physiology and Biochemistry,126(3), 242-249. doi: https://doi.org/10.1080/13813455.2018.1510968
Kim, T. H., Mars, W. M., Stolz, D. B., & Michalopoulos, G. K. (2000). Expression and activation of pro-MMP-2 and pro-MMP-9 during rat liver regeneration. Hepatology (Baltimore, Md.),31(1), 75-82. doi: https://doi.org/10.1002/hep.510310114
Knittel, T., Mehde, M., Grundmann, A., Saile, B., Scharf, J.-G., Ramadori, G. (2000). Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat. Histochem Cell Biol., 113(6), 443-453. doi: https://doi.org/10.1007/s004180000150
Lana, J. P., Martins, L. B., Oliveira, M. C. d., Menezes-Garcia, Z., Yamada, L. T. P., Vieira, L. Q., . . . Ferreira, A. V. (2016). TNF and IL-18 cytokines may regulate liver fat storage under homeostasis conditions. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 41(12), 1295-1302. doi: https://doi.org/10.1139/apnm-2016-0265
Lindegaard, B., Hvid, T., Wolsk Mygind, H., Hartvig-Mortensen, O., Grøndal, T., Abildgaard, J., . . . Baranowski, M. (2018). Low expression of IL-18 and IL-18 receptor in human skeletal muscle is associated with systemic and intramuscular lipid metabolism—Role of HIV lipodystrophy. PloS one,13(1), e0186755. doi: https://doi.org/10.1371/journal.pone.0186755
Lindegaard, B., Matthews, V. B., Brandt, C., Hojman, P., Allen, T. L., Estevez, E., . . . Febbraio, M. A. (2013). Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice. Diabetes, 62(9), 3064-3074. doi: https://doi.org/10.2337/db12-1095
 Linden, M. A., Sheldon, R. D., Meers, G. M., Ortinau, L. C., Morris, E. M., Booth, F. W., . . . Rector, R. S. (2016). Aerobic exercise training in the treatment of non-alcoholic fatty liver disease related fibrosis. The Journal of Physiology, 594(18), 5271-5284. doi: https://doi.org/10.1113/JP272235
Liu, T. Y., Shi, C. X., Gao, R., Sun, H. J., Xiong, X. Q., Ding, L., . . . Zhu, G. Q. (2015). Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clinical science (London, England : 1979),129(10), 839-850. doi: https://doi.org/10.1042/CS20150009
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408. doi: https://doi.org/10.1006/meth.2001.1262
Lv, J., Pan, Y., Li, X., Cheng, D., Ju, H., Tian, J., . . . Zhang, Y. (2015). Study on the distribution and elimination of the new hormone irisin in vivo: new discoveries regarding irisin. Horm Metab Res, 47(08), 591-595. doi: https://doi.org/10.1055/s-0035-1547261
Mo, L., Shen, J., Liu, Q., Zhang, Y., Kuang, J., Pu, S., . . . He, J.  (2016). Irisin is regulated by CAR in liver and is a mediator of hepatic glucose and lipid metabolism. Molecular endocrinology (Baltimore, Md.), 30(5), 533-542. doi: 10.1210/me.2015-1292.
Moreno-Navarrete, J. M., Ortega, F., Serrano, M., Guerra, E., Pardo, G., Tinahones, F., . . . Fernández-Real, J. M. . (2013). Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. The Journal of Clinical Endocrinology and Metabolism, 98(4), E769-E778. doi: https://doi.org/10.1210/jc.2012-274
Munsterman, I. D., Kendall, T. J., Khelil, N., Popa, M., Lomme, R., Drenth, J. P., & Tjwa, E. (2018). Extracellular matrix components indicate remodelling activity in different fibrosis stages of human non-alcoholic fatty liver disease. Histopathology, 73(4), 612-621. doi: https://doi.org/10.1111/his.13665
Netea, M. G., Joosten, L. A., Lewis, E., Jensen, D. R., Voshol, P. J., Kullberg, B. J., . . . van der Meer, J. W. (2006). Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nature Medicine, 12(6), 650-656. doi: https://doi.org/10.1038/nm1415
Nold, M., Goede, A., Eberhardt, W., Pfeilschifter, J., & Mühl, H. (2003). IL-18 initiates release of matrix metalloproteinase-9 from peripheral blood mononuclear cells without affecting tissue inhibitor of matrix metalloproteinases-1: suppression by TNFα blockage and modulation by IL-10. Naunyn-Schmiedeberg's Archives of Pharmacology, 367(1), 68-75. doi: https://doi.org/10.1007/s00210-002-0648-5
Novick, D., Kim, S., Kaplanski, G., & Dinarello, C. A. (2013). Interleukin-18, more than a Th1 cytokine. Paper presented at the Seminars in immunology. doi: https://doi.org/10.1016/j.smim.2013.10.014
Olusi, S., Abdeen, S., & George, S. (2012). Associations among serum concentrations of interleukin-18, matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-1 (TIMP-1) and METAVIR fibrosis score in patients with chronic hepatitis. International Journal of Interferon, Cytokine and Mediator Research, 4, 17-24. doi: http://dx.doi.org/10.2147/IJICMR.S28976
Palladini, G., Di Pasqua, L. G., Berardo, C., Siciliano, V., Richelmi, P., Perlini, S., Ferrigno, A., & Vairetti, M.(2019). Animal models of steatosis (NAFLD) and steatohepatitis (NASH) exhibit hepatic lobe-specific gelatinases activity and oxidative stress. Canadian Journal of Gastroenterology & Hepatology, 2019, 5413461. doi: https://doi.org/10.1155/2019/5413461
Park, M. J., Kim, D. I., Choi, J. H., Heo, Y.-R., & Park, S. H. (2015). New role of irisin in hepatocytes: The protective effect of hepatic steatosis in vitro. Cellular Signalling,  27(9), 1831-1839. doi: https://doi.org/10.1016/j.cellsig.2015.04.010
 Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature reviews. Endocrinology, 8(8), 457-465. doi: https://doi.org/10.1038/nrendo.2012.49
Pedersen, B. K. (2013). Muscle as a secretory organ. Comprehensive Physiology, 3(3), 1337-1362.
Pedersen, L., Pilegaard, H., Hansen, J., Brandt, C., Adser, H., Hidalgo, J., . . . Hojman, P. (2011). Exercise-induced liver chemokine CXCL-1 expression is linked to muscle-derived interleukin-6 expression. The Journal of Physiology, 589(6), 1409-1420. doi: https://doi.org/10.1113/jphysiol.2010.200733
Plomgaard, P., Penkowa, M., & Pedersen, B. K. (2005). Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles. Exercise Immunology Review, 11(4), 53-63. PMID: 16385844
Rui, L. (2014). Energy metabolism in the liver. Comprehensive Physiology,4(1), 177. doi: https://doi.org/10.1002/cphy.c130024
Shabana, M., Ibrahim, H. M., Khadre, S. E., Elemam, M. (2012). Influence of rifampicin and tetracycline administration on some biochemical and histological parameters in albino rats. The Journal of Basic & Applied Zoology, 65(5), 299-308.  doi: https://doi.org/10.1016/j.jobaz.2012.10.009
Shanaki, M., Moradi, N., Emamgholipour, S., Fadaei, R., & Poustchi, H. J. D. (2017). Lower circulating irisin is associated with nonalcoholic fatty liver disease and type 2 diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews,11, S467-S472. doi: https://doi.org/10.1016/j.dsx.2017.03.037
Shirvani, H., & Arabzadeh, E. J. E. (2020). Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α. Eat. Weight. Disord., 25(1), 17-24. doi: https://doi.org/10.1007/s40519-018-0491-4
Shirvani, H., & Rahmati-Ahmadabad, S. J. L. I. H. (2019). Irisin intraction with adipose tissue secretions by exercise training and flaxseed oil supplement. Lipids Health Dis., 18(1), 1-9. Timmons, J. A., Baar, K., Davidsen, P. K., & Atherton, P. J. (2012). Is irisin a human exercise gene? Nature, 488(7413), E9-E10. doi: https://doi.org/10.1186/s12944-019-0960-4
Trojanek, J. B., Michałkiewicz, J., Grzywa-Czuba, R., Jańczyk, W., Gackowska, L., Kubiszewska, I., . . . Socha, P. (2020). Expression of matrix metalloproteinases and their tissue inhibitors in peripheral blood leukocytes and plasma of children with nonalcoholic fatty liver disease. Mediators of Inflammation, 2020, 8327945. doi: https://doi.org/10.1155/2020/8327945
Vernon, G., Baranova, A., & Younossi, Z. J. A. P. (2011). Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Alimentary Pharmacology & Therapeutics, 34(3), 274-285. doi: https://doi.org/10.1111/j.1365-2036.2011.04724.x
Wattacheril, J., & Sanyal, A. J. (2016). Lean NAFLD: An underrecognized outlier. Current Hepatology Reports, 15(2), 134-139. doi: https://doi.org/10.1007/s11901-016-0302-1
Xiong, X. Q., Chen, D., Sun, H. J., Ding, L., Wang, J. J., Chen, Q., . . . Zhu, G. Q. (2015). FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochimica et Biophysica Acta,1852(9), 1867-1875. doi: https://doi.org/10.1016/j.bbadis.2015.06.017
Yamanishi, K., Maeda, S., Kuwahara-Otani, S., Watanabe, Y., Yoshida, M., Ikubo, K., . . . Matsunaga, H. (2016). Interleukin-18–deficient mice develop dyslipidemia resulting in nonalcoholic fatty liver disease and steatohepatitis. Translational Research: The Journal of Laboratory and Clinical Medicine, 173, 101-114. e107. doi: https://doi.org/10.1016/j.trsl.2016.03.010