Comparison of acute effects of different resistance exercise protocols with and without blood flow restriction on selected hypertrophy-related hormones in competitive wrestlers

Document Type : Original Article

Authors

1 MSc, Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Kharazmi University, Tehran, Iran.

2 Assistant Professor, Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Kharazmi University, Tehran, Iran.

Abstract

The study aimed to compare the acute effects of low resistance exercises with partial and complete blood flow restriction (BFR) and heavy resistance exercise on growth hormone (GH), myostatin, testosterone, and cortisol in competitive wrestlers. Forty elite wrestlers were randomly divided into four groups (n=10); low resistance training with complete BFR (LRT+CBFR), low resistance training with partial BFR (LRT+PBFR), low resistance training (LRT), and heavy resistance training (HRT). Blood samples were collected before and after the intervention, and a specific ELISA kit measured variables. Analysis of covariance and paired t-test was performed to analyze the data. There were no significant differences in the variables between the four interventions. Intra-group results showed a significant decrease in myostatin levels in the HRT group (p=0.02), and a significant increase in GH in the LRT+CBFR (p=0.02) and LRT+PBFR (p=0.03), testosterone in the HRT group (p=0.04) and cortisol in the three groups LRT+CBFR (p=0.02), LRT+PBFR (p=0.01) and HRT (p=0.04). Despite the similarity of the changes in the four interventions, due to the percentage of changes, it seems that low resistance training with BFR could produce similar anabolic effects to high-intensity resistance training.

What is already known on this subject?

Heavy resistance training causes to release more anabolic hormones. 

 

What this study adds?

Although in this study the changes in hormones in various groups were not statistically significant, the percentage of changes was higher in the groups that endured more load. Thus, low-load resistance training with BFR creates more metabolic pressure and anabolic environment.

Keywords

Main Subjects


American College of Sports Medicine position stand. Progression models in resistance training for healthy adults, 2009. Med Sci Sports Exerc, 41, 687-708. doi: https://doi.org/10.1249/MSS.0b013e3181915670
ABE, T., KEARNS, C. F. & SATO, Y. 2006. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of applied physiology, 100, 1460-1466. doi: https://doi.org/10.1152/japplphysiol.01267.2005
AMANI-SHALAMZARI, S., SARIKHANI, A., PATON, C., RAJABI, H., BAYATI, M., NIKOLAIDIS, P. T. & KNECHTLE, B. 2020. Occlusion Training During Specific Futsal Training Improves Aspects of Physiological and Physical Performance. J Sports Sci Med, 19, 374-382. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196744/
AOKI, M. S., SOARES, A. G., MIYABARA, E. H., BAPTISTA, I. L. & MORISCOT, A. S. 2009. Expression of genes related to myostatin signaling during rat skeletal muscle longitudinal growth. Muscle Nerve, 40, 992-9. doi: https://doi.org/10.1002/mus.21426
BAGHERI, R., RASHIDLAMIR, A., MOTEVALLI, M. S., ELLIOTT, B. T., MEHRABANI, J. & WONG, A. 2019. Effects of upper-body, lower-body, or combined resistance training on the ratio of follistatin and myostatin in middle-aged men. Eur J Appl Physiol, 119, 1921-1931. doi: https://doi.org/10.1007/s00421-019-04180-z
BIGDELI, S., DEHGHANIYAN, M. H., AMANI-SHALAMZARI, S., RAJABI, H. & GAHREMAN, D. E. 2020. Functional training with blood occlusion influences muscle quality indices in older adults. Archives of Gerontology and Geriatrics, 90, 104110. doi: https://doi.org/10.1016/j.archger.2020.104110
FUJITA, S., ABE, T., DRUMMOND, M. J., CADENAS, J. G., DREYER, H. C., SATO, Y., VOLPI, E. & RASMUSSEN, B. B. 2007. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol (1985), 103, 903-10. doi: https://doi.org/10.1152/japplphysiol.00195.2007
GODFREY, R. J., WHYTE, G. P., BUCKLEY, J. & QUINLIVAN, R. 2009. The role of lactate in the exercise-induced human growth hormone response: evidence from McArdle disease. Br J Sports Med, 43, 521-5. doi: http://dx.doi.org/10.1136/bjsm.2007.041970
GONZALEZ-CADAVID, N. F., TAYLOR, W. E., YARASHESKI, K., SINHA-HIKIM, I., MA, K., EZZAT, S., SHEN, R., LALANI, R., ASA, S., MAMITA, M., NAIR, G., ARVER, S. & BHASIN, S. 1998. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci U S A, 95, 14938-43. doi: https://doi.org/10.1073/pnas.95.25.14938
HAKKINEN, K., PAKARINEN, A., KRAEMER, W. J., NEWTON, R. U. & ALEN, M. 2000. Basal concentrations and acute responses of serum hormones and strength development during heavy resistance training in middle-aged and elderly men and women. Journals of Gerontology-Biological Sciences and Medical Sciences, 55, B95. doi: https://doi.org/10.1093/gerona/55.2.b95
JESSEE, M. B., MATTOCKS, K. T., BUCKNER, S., DANKEL, S. J., MOUSER, J. G., ABE, T. & LOENNEKE, J. P. 2018. Mechanisms of Blood Flow Restriction: The New Testament. Techniques in Orthopaedics, 33, 72-79. doi: https://doi.org/10.1097/BTO.0000000000000252
KARABULUT, M., ABE, T., SATO, Y. & BEMBEN, M. G. 2010. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol, 108, 147-55. doi: https://doi.org/10.1007/s00421-009-1204-5
KAZEMI, F. 2016. The correlation of resistance exercise-induced myostatin with insulin resistance and plasma cytokines in healthy young men. J Endocrinol Invest, 39, 383-8. doi: https://doi.org/10.1007/s40618-015-0373-9
KIM, E., GREGG, L. D., KIM, L., SHERK, V. D., BEMBEN, M. G. & BEMBEN, D. A. 2014. Hormone responses to an acute bout of low intensity blood flow restricted resistance exercise in college-aged females. Journal of sports science & medicine, 13, 91.
KON, M., IKEDA, T., HOMMA, T. & SUZUKI, Y. 2012. Effects of low-intensity resistance exercise under acute systemic hypoxia on hormonal responses. J Strength Cond Res, 26, 611-7. doi: https://doi.org/10.1519/JSC.0b013e3182281c69
KRAEMER, W. J., BRADLEY C. NINDL & GORDON, S. E. 2005. Resistance exercise: acute and chronic changes in growth hormone concentrations. The Endocrine System in Sports and Exercise 110-121.doi: https://doi.org/10.1002/9780470757826.ch9
KRAEMER, W. J., HA╠łKKINEN, K., NEWTON, R. U., NINDL, B. C., VOLEK, J. S., MCCORMICK, M., GOTSHALK, L. A., GORDON, S. E., FLECK, S. J. & CAMPBELL, W. W. 1999. Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. Journal of applied physiology, 87, 982-992. doi: https://doi.org/10.1152/jappl.1999.87.3.982
KRAEMER, W. J. & RATAMESS, N. A. 2005. Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35, 339-361. doi: https://doi.org/10.2165/00007256-200535040-00004
LAURENTINO, G. C., UGRINOWITSCH, C., ROSCHEL, H., AOKI, M. S., SOARES, A. G., NEVES, M., JR., AIHARA, A. Y., FERNANDES ADA, R. & TRICOLI, V. 2012. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc, 44, 406-12. doi: https://doi.org/10.1249/MSS.0b013e318233b4bc
LOENNEKE, J., WILSON, G. & WILSON, J. 2010. A mechanistic approach to blood flow occlusion. International journal of sports medicine, 31, 1-4. doi: https://doi.org/10.1055/s-0029-1239499
LOENNEKE, J. P., ALLEN, K. M., MOUSER, J. G., THIEBAUD, R. S., KIM, D., ABE, T. & BEMBEN, M. G. 2015. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur J Appl Physiol, 115, 397-405. doi: https://doi.org/10.1007/s00421-014-3030-7
LU, S.-S., LAU, C.-P., TUNG, Y.-F., HUANG, S.-W., CHEN, Y. H., SHIH, H. C., TSAI, S.-C., LU, C.-C., WANG, S. & CHEN, J.-J. 1997. Lactate and the effects of exercise on testosterone secretion: evidence for the involvement of a cAMP-mediated mechanism. Medicine and science in sports and exercise, 29, 1048-1054. doi: https://doi.org/10.1097/00005768-199708000-00010
MA, K., MALLIDIS, C., BHASIN, S., MAHABADI, V., ARTAZA, J., GONZALEZ-CADAVID, N., ARIAS, J. & SALEHIAN, B. 2003. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab, 285, E363-71. doi: https://doi.org/10.1152/ajpendo.00487.2002
POPE, Z. K., WILLARDSON, J. M. & SCHOENFELD, B. J. 2013. Exercise and blood flow restriction. The Journal of Strength & Conditioning Research, 27, 2914-2926. doi: https://doi.org/10.1519/JSC.0b013e3182874721
REEVES, G. V., KRAEMER, R. R., HOLLANDER, D. B., CLAVIER, J., THOMAS, C., FRANCOIS, M. & CASTRACANE, V. D. 2006. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of applied physiology, 101, 1616-1622. doi: https://doi.org/10.1152/japplphysiol.00440.2006
RÍOS, R., CARNEIRO, I., ARCE, V. M. & DEVESA, J. 2002. Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol, 282, C993-9. doi: https://doi.org/10.1152/ajpcell.00372.2001
ROTH, S. M., MARTEL, G. F., FERRELL, R. E., METTER, E. J., HURLEY, B. F. & ROGERS, M. A. 2003. Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Exp Biol Med (Maywood), 228, 706-9. doi: https://doi.org/10.1177/153537020322800609
SUDO, M., ANDO, S. & KANO, Y. 2017. Repeated blood flow restriction induces muscle fiber hypertrophy. Muscle Nerve, 55, 274-276. doi: https://doi.org/10.1002/mus.25415
SUGA, T., OKITA, K., TAKADA, S., OMOKAWA, M., KADOGUCHI, T., YOKOTA, T., HIRABAYASHI, K., TAKAHASHI, M., MORITA, N., MASAHIRO, H., KINUGAWA, S. & TSUTSUI, H. 2012. Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. European journal of applied physiology, 112, 3915-3920. doi: https://doi.org/10.1007/s00421-012-2377-x
VINGREN, J. L., KRAEMER, W. J., RATAMESS, N. A., ANDERSON, J. M., VOLEK, J. S. & MARESH, C. M. 2010. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med, 40, 1037-53. doi: https://doi.org/10.2165/11536910-000000000-00000
WANG, C., SWERDLOFF, R. S., IRANMANESH, A., DOBS, A., SNYDER, P. J., CUNNINGHAM, G., MATSUMOTO, A. M., WEBER, T.& BERMAN, N. 2000. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab, 85, 2839-53. doi: https://doi.org/10.1210/jcem.85.8.6747
WHITTEMORE, L. A., SONG, K., LI, X., AGHAJANIAN, J., DAVIES, M., GIRGENRATH, S., HILL, J. J., JALENAK, M., KELLEY, P., KNIGHT, A., MAYLOR, R., O'HARA, D., PEARSON, A., QUAZI, A., RYERSON, S., TAN, X. Y., TOMKINSON, K. N., VELDMAN, G. M., WIDOM, A., WRIGHT, J. F., WUDYKA, S., ZHAO, L. & WOLFMAN, N. M. 2003. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun, 300, 965-71. doi: https://doi.org/10.1016/s0006-291x(02)02953-4
 
 
 
Volume 1, Issue 2
September 2021
Pages 59-65
  • Receive Date: 07 June 2021
  • Revise Date: 01 August 2021
  • Accept Date: 07 August 2021
  • First Publish Date: 07 August 2021