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Letter to editor 

Effects of exercise on cognition, hippocampal neurogenesis, and learning: 

Muscle–brain crosstalk in health and diseases 

Fatemeh Panahzadeh1, Reza Sabzevari Rad2* 

Dear Editor-in-Chief 

Based on recent studies, it is now clear that there is a muscle–brain 

endocrine loop that can be partly mediated by myokine signaling. 

There are also other metabolites as mediators which can affect 

circulating compounds (Rai & Demontis, 2016) and these include 

noncoding RNAs (Makarova et al., 2014), hormone-associated 

responses, as well as, muscular enzymes (Pedersen, 2019). Brain-

Derived Neurotrophic Factor (BDNF) is considered to be a key role in 

helping to mediate the impacts of exercise on the hippocampus 

(Loprinzi & Frith, 2019). Studies conducted on laboratory rats showed 

an increase in BDNF mRNA and BDNF protein in the hippocampus of 

these animals when wheel running exercise was performed for 1 to 8 

weeks (Adlard, Perreau, & Cotman, 2005; Farmer et al., 2004; Liu & 

Nusslock, 2018; Neeper, Góauctemez-Pinilla, Choi, & Cotman, 1995; 

Oliff, Berchtold, Isackson, & Cotman, 1998; Van Hoomissen, 

Chambliss, Holmes, & Dishman, 2003). In terms of cognitive functions, 

i.e. memory and learning, BDNF has also been demonstrated to be 

effective in the improvement of such functions (Vaynman, Ying, & 

Gomez‐Pinilla, 2004; Vaynman, Ying, & Gómez‐Pinilla, 2004). 

Research on humans indicates that their brains can release BDNF 

while cycling (Rasmussen et al., 2009; Seifert et al., 2010), also in 

another study in healthy people as well as people with schizophrenia 

who had been training in aerobic exercise for three months, the level 

of BDNF increased in their hippocampus by 12% and 16%, 

respectively (Pajonk et al., 2010). As a growth factor for the 

hippocampus, BDNF plays a significant role in learning and improving 

cell survival (Wrann et al., 2013). Interestingly enough, research 

findings show that BDNF can also be expressed in skeletal muscle 

tissues during exercise in humans; nonetheless, it is not clear whether 
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muscle-derived BDNF can get into the bloodstream from the 

muscle to create a direct interaction between muscle and brain 

(Matthews et al., 2009). 

Some fascinating studies indicate that irisin and myokines 

cathepsin-B might cross the (BBB) blood-brain barrier, and 

consequently, BDNF levels may increase. In recent a study 

conducted by Moon et al. (Moon et al., 2016) a novel myokine, 

cathepsin B (CTSB) was identified. Other work also 

demonstrated that exercise can increase CTSB systemic level, 

therefore, BDNF expression will be promoted in the 

hippocampus and lead to the formation of nerve tissue as well. 

Running on a treadmill for four months increased CTSB plasma 

levels, as well as CTSB gene expression in humans, mice, and 

rhesus monkeys. In addition, it was indicated that CTSB could 

cross BBB in mice. In studies by Moon et al. (2016) on CTSB 

knockout mice, it was made clear that mice without CTSB 

refused to do voluntary exercise regarding hippocampal growth 

and cognitive development. It is not clear whether myokine 

CTSB can lead to cognitive function development in humans 

regarding exercise training or not (Moon et al., 2016; Suzuki, 

2016). 

The PGC-1α-dependent myokine irisin, which is famous for its 

browning impacts (Boström et al., 2012), can play a role in the 

intervention of the brain’s physical activity (Wrann et al., 2013). 

An excessive expression of irisin in the primary cortical neurons 

can cause a higher BDNF expression, while FNDC5 knockdown 

mediated by RNAi can cause a lower BDNF expression. 

Furthermore, irisin delivery to the mice’s liver by adenoviral 

vectors will raise the systemic irisin level, consequently 

resulting in a higher level of BDNF in the hippocampus. Whether 

doing exercise can increase irisin plasma concentration in 

humans (Albrecht et al., 2015; Wrann, 2015), and whether irisin 

is affected by a muscle–brain endocrine loop is a disputable 

issue. 
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